![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epfrc | Structured version Visualization version GIF version |
Description: A subset of a well-founded class has a minimal element. (Contributed by NM, 17-Feb-2004.) (Revised by David Abernethy, 22-Feb-2011.) |
Ref | Expression |
---|---|
epfrc.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
epfrc | ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epfrc.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | frc 5663 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
3 | dfin5 3984 | . . . . 5 ⊢ (𝐵 ∩ 𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑦 ∈ 𝑥} | |
4 | epel 5602 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
5 | 4 | rabbii 3449 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = {𝑦 ∈ 𝐵 ∣ 𝑦 ∈ 𝑥} |
6 | 3, 5 | eqtr4i 2771 | . . . 4 ⊢ (𝐵 ∩ 𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} |
7 | 6 | eqeq1i 2745 | . . 3 ⊢ ((𝐵 ∩ 𝑥) = ∅ ↔ {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
8 | 7 | rexbii 3100 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
9 | 2, 8 | sylibr 234 | 1 ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 E cep 5598 Fr wfr 5649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-fr 5652 |
This theorem is referenced by: wefrc 5694 onfr 6434 epfrs 9800 |
Copyright terms: Public domain | W3C validator |