MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epfrc Structured version   Visualization version   GIF version

Theorem epfrc 5235
Description: A subset of an epsilon-founded class has a minimal element. (Contributed by NM, 17-Feb-2004.) (Revised by David Abernethy, 22-Feb-2011.)
Hypothesis
Ref Expression
epfrc.1 𝐵 ∈ V
Assertion
Ref Expression
epfrc (( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem epfrc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 epfrc.1 . . 3 𝐵 ∈ V
21frc 5215 . 2 (( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 {𝑦𝐵𝑦 E 𝑥} = ∅)
3 dfin5 3731 . . . . 5 (𝐵𝑥) = {𝑦𝐵𝑦𝑥}
4 epel 5165 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
54rabbii 3335 . . . . 5 {𝑦𝐵𝑦 E 𝑥} = {𝑦𝐵𝑦𝑥}
63, 5eqtr4i 2796 . . . 4 (𝐵𝑥) = {𝑦𝐵𝑦 E 𝑥}
76eqeq1i 2776 . . 3 ((𝐵𝑥) = ∅ ↔ {𝑦𝐵𝑦 E 𝑥} = ∅)
87rexbii 3189 . 2 (∃𝑥𝐵 (𝐵𝑥) = ∅ ↔ ∃𝑥𝐵 {𝑦𝐵𝑦 E 𝑥} = ∅)
92, 8sylibr 224 1 (( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  {crab 3065  Vcvv 3351  cin 3722  wss 3723  c0 4063   class class class wbr 4786   E cep 5161   Fr wfr 5205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-eprel 5162  df-fr 5208
This theorem is referenced by:  wefrc  5243  onfr  5906  epfrs  8771
  Copyright terms: Public domain W3C validator