![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epfrc | Structured version Visualization version GIF version |
Description: A subset of an epsilon-founded class has a minimal element. (Contributed by NM, 17-Feb-2004.) (Revised by David Abernethy, 22-Feb-2011.) |
Ref | Expression |
---|---|
epfrc.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
epfrc | ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epfrc.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | frc 5416 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
3 | dfin5 3873 | . . . . 5 ⊢ (𝐵 ∩ 𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑦 ∈ 𝑥} | |
4 | epel 5364 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
5 | 4 | rabbii 3421 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = {𝑦 ∈ 𝐵 ∣ 𝑦 ∈ 𝑥} |
6 | 3, 5 | eqtr4i 2824 | . . . 4 ⊢ (𝐵 ∩ 𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} |
7 | 6 | eqeq1i 2802 | . . 3 ⊢ ((𝐵 ∩ 𝑥) = ∅ ↔ {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
8 | 7 | rexbii 3213 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
9 | 2, 8 | sylibr 235 | 1 ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ≠ wne 2986 ∃wrex 3108 {crab 3111 Vcvv 3440 ∩ cin 3864 ⊆ wss 3865 ∅c0 4217 class class class wbr 4968 E cep 5359 Fr wfr 5406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-br 4969 df-opab 5031 df-eprel 5360 df-fr 5409 |
This theorem is referenced by: wefrc 5444 onfr 6112 epfrs 9026 |
Copyright terms: Public domain | W3C validator |