MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epfrc Structured version   Visualization version   GIF version

Theorem epfrc 5566
Description: A subset of a well-founded class has a minimal element. (Contributed by NM, 17-Feb-2004.) (Revised by David Abernethy, 22-Feb-2011.)
Hypothesis
Ref Expression
epfrc.1 𝐵 ∈ V
Assertion
Ref Expression
epfrc (( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem epfrc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 epfrc.1 . . 3 𝐵 ∈ V
21frc 5546 . 2 (( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 {𝑦𝐵𝑦 E 𝑥} = ∅)
3 dfin5 3891 . . . . 5 (𝐵𝑥) = {𝑦𝐵𝑦𝑥}
4 epel 5489 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
54rabbii 3397 . . . . 5 {𝑦𝐵𝑦 E 𝑥} = {𝑦𝐵𝑦𝑥}
63, 5eqtr4i 2769 . . . 4 (𝐵𝑥) = {𝑦𝐵𝑦 E 𝑥}
76eqeq1i 2743 . . 3 ((𝐵𝑥) = ∅ ↔ {𝑦𝐵𝑦 E 𝑥} = ∅)
87rexbii 3177 . 2 (∃𝑥𝐵 (𝐵𝑥) = ∅ ↔ ∃𝑥𝐵 {𝑦𝐵𝑦 E 𝑥} = ∅)
92, 8sylibr 233 1 (( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  wss 3883  c0 4253   class class class wbr 5070   E cep 5485   Fr wfr 5532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-fr 5535
This theorem is referenced by:  wefrc  5574  onfr  6290  epfrs  9420
  Copyright terms: Public domain W3C validator