Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epfrc | Structured version Visualization version GIF version |
Description: A subset of a well-founded class has a minimal element. (Contributed by NM, 17-Feb-2004.) (Revised by David Abernethy, 22-Feb-2011.) |
Ref | Expression |
---|---|
epfrc.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
epfrc | ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epfrc.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | frc 5517 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
3 | dfin5 3874 | . . . . 5 ⊢ (𝐵 ∩ 𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑦 ∈ 𝑥} | |
4 | epel 5463 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
5 | 4 | rabbii 3383 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = {𝑦 ∈ 𝐵 ∣ 𝑦 ∈ 𝑥} |
6 | 3, 5 | eqtr4i 2768 | . . . 4 ⊢ (𝐵 ∩ 𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} |
7 | 6 | eqeq1i 2742 | . . 3 ⊢ ((𝐵 ∩ 𝑥) = ∅ ↔ {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
8 | 7 | rexbii 3170 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
9 | 2, 8 | sylibr 237 | 1 ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∃wrex 3062 {crab 3065 Vcvv 3408 ∩ cin 3865 ⊆ wss 3866 ∅c0 4237 class class class wbr 5053 E cep 5459 Fr wfr 5506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-eprel 5460 df-fr 5509 |
This theorem is referenced by: wefrc 5545 onfr 6252 epfrs 9347 |
Copyright terms: Public domain | W3C validator |