| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epfrc | Structured version Visualization version GIF version | ||
| Description: A subset of a well-founded class has a minimal element. (Contributed by NM, 17-Feb-2004.) (Revised by David Abernethy, 22-Feb-2011.) |
| Ref | Expression |
|---|---|
| epfrc.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| epfrc | ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epfrc.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | frc 5604 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
| 3 | dfin5 3925 | . . . . 5 ⊢ (𝐵 ∩ 𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑦 ∈ 𝑥} | |
| 4 | epel 5544 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 5 | 4 | rabbii 3414 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = {𝑦 ∈ 𝐵 ∣ 𝑦 ∈ 𝑥} |
| 6 | 3, 5 | eqtr4i 2756 | . . . 4 ⊢ (𝐵 ∩ 𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} |
| 7 | 6 | eqeq1i 2735 | . . 3 ⊢ ((𝐵 ∩ 𝑥) = ∅ ↔ {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
| 8 | 7 | rexbii 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥} = ∅) |
| 9 | 2, 8 | sylibr 234 | 1 ⊢ (( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 E cep 5540 Fr wfr 5591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-eprel 5541 df-fr 5594 |
| This theorem is referenced by: wefrc 5635 onfr 6374 epfrs 9691 |
| Copyright terms: Public domain | W3C validator |