MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpanl1 Structured version   Visualization version   GIF version

Theorem mpanl1 700
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanl1.1 𝜑
mpanl1.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpanl1 ((𝜓𝜒) → 𝜃)

Proof of Theorem mpanl1
StepHypRef Expression
1 mpanl1.1 . . 3 𝜑
21jctl 523 . 2 (𝜓 → (𝜑𝜓))
3 mpanl1.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3sylan 580 1 ((𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mpanl12  702  frc  5579  oeoelem  8513  ercnv  8643  frfi  9169  fin23lem23  10214  divdiv23zi  11871  recp1lt1  12017  divgt0i  12027  divge0i  12028  ltreci  12029  lereci  12030  lt2msqi  12031  le2msqi  12032  msq11i  12033  ltdiv23i  12043  fnn0ind  12569  elfzp1b  13498  elfzm1b  13499  sqrt11i  15289  sqrtmuli  15290  sqrtmsq2i  15292  sqrtlei  15293  sqrtlti  15294  fsum  15624  fprod  15845  blometi  30778  spansnm0i  31625  lnopli  31943  lnfnli  32015  opsqrlem1  32115  opsqrlem6  32120  mdslmd3i  32307  atordi  32359  mdsymlem1  32378  gsummpt2co  33023  finxpreclem4  37427  ptrecube  37659  fdc  37784  prter3  38920
  Copyright terms: Public domain W3C validator