![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanl1.1 | ⊢ 𝜑 |
mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | jctl 522 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 578 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: mpanl12 698 frc 5641 oeoelem 8600 ercnv 8726 frfi 9290 fin23lem23 10323 divdiv23zi 11971 recp1lt1 12116 divgt0i 12126 divge0i 12127 ltreci 12128 lereci 12129 lt2msqi 12130 le2msqi 12131 msq11i 12132 ltdiv23i 12142 fnn0ind 12665 elfzp1b 13582 elfzm1b 13583 sqrt11i 15335 sqrtmuli 15336 sqrtmsq2i 15338 sqrtlei 15339 sqrtlti 15340 fsum 15670 fprod 15889 blometi 30323 spansnm0i 31170 lnopli 31488 lnfnli 31560 opsqrlem1 31660 opsqrlem6 31665 mdslmd3i 31852 atordi 31904 mdsymlem1 31923 gsummpt2co 32470 finxpreclem4 36578 ptrecube 36791 fdc 36916 prter3 38055 |
Copyright terms: Public domain | W3C validator |