| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanl1.1 | ⊢ 𝜑 |
| mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | jctl 523 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl12 702 frc 5586 oeoelem 8523 ercnv 8653 frfi 9190 fin23lem23 10239 divdiv23zi 11895 recp1lt1 12041 divgt0i 12051 divge0i 12052 ltreci 12053 lereci 12054 lt2msqi 12055 le2msqi 12056 msq11i 12057 ltdiv23i 12067 fnn0ind 12593 elfzp1b 13522 elfzm1b 13523 sqrt11i 15310 sqrtmuli 15311 sqrtmsq2i 15313 sqrtlei 15314 sqrtlti 15315 fsum 15645 fprod 15866 blometi 30765 spansnm0i 31612 lnopli 31930 lnfnli 32002 opsqrlem1 32102 opsqrlem6 32107 mdslmd3i 32294 atordi 32346 mdsymlem1 32365 gsummpt2co 33014 finxpreclem4 37367 ptrecube 37599 fdc 37724 prter3 38860 |
| Copyright terms: Public domain | W3C validator |