| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanl1.1 | ⊢ 𝜑 |
| mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | jctl 523 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl12 702 frc 5601 oeoelem 8562 ercnv 8692 frfi 9232 fin23lem23 10279 divdiv23zi 11935 recp1lt1 12081 divgt0i 12091 divge0i 12092 ltreci 12093 lereci 12094 lt2msqi 12095 le2msqi 12096 msq11i 12097 ltdiv23i 12107 fnn0ind 12633 elfzp1b 13562 elfzm1b 13563 sqrt11i 15351 sqrtmuli 15352 sqrtmsq2i 15354 sqrtlei 15355 sqrtlti 15356 fsum 15686 fprod 15907 blometi 30732 spansnm0i 31579 lnopli 31897 lnfnli 31969 opsqrlem1 32069 opsqrlem6 32074 mdslmd3i 32261 atordi 32313 mdsymlem1 32332 gsummpt2co 32988 finxpreclem4 37382 ptrecube 37614 fdc 37739 prter3 38875 |
| Copyright terms: Public domain | W3C validator |