![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanl1.1 | ⊢ 𝜑 |
mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | jctl 523 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanl12 702 frc 5652 oeoelem 8635 ercnv 8765 frfi 9319 fin23lem23 10364 divdiv23zi 12018 recp1lt1 12164 divgt0i 12174 divge0i 12175 ltreci 12176 lereci 12177 lt2msqi 12178 le2msqi 12179 msq11i 12180 ltdiv23i 12190 fnn0ind 12715 elfzp1b 13638 elfzm1b 13639 sqrt11i 15420 sqrtmuli 15421 sqrtmsq2i 15423 sqrtlei 15424 sqrtlti 15425 fsum 15753 fprod 15974 blometi 30832 spansnm0i 31679 lnopli 31997 lnfnli 32069 opsqrlem1 32169 opsqrlem6 32174 mdslmd3i 32361 atordi 32413 mdsymlem1 32432 gsummpt2co 33034 finxpreclem4 37377 ptrecube 37607 fdc 37732 prter3 38864 |
Copyright terms: Public domain | W3C validator |