| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanl1.1 | ⊢ 𝜑 |
| mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | jctl 523 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl12 702 frc 5579 oeoelem 8513 ercnv 8643 frfi 9169 fin23lem23 10214 divdiv23zi 11871 recp1lt1 12017 divgt0i 12027 divge0i 12028 ltreci 12029 lereci 12030 lt2msqi 12031 le2msqi 12032 msq11i 12033 ltdiv23i 12043 fnn0ind 12569 elfzp1b 13498 elfzm1b 13499 sqrt11i 15289 sqrtmuli 15290 sqrtmsq2i 15292 sqrtlei 15293 sqrtlti 15294 fsum 15624 fprod 15845 blometi 30778 spansnm0i 31625 lnopli 31943 lnfnli 32015 opsqrlem1 32115 opsqrlem6 32120 mdslmd3i 32307 atordi 32359 mdsymlem1 32378 gsummpt2co 33023 finxpreclem4 37427 ptrecube 37659 fdc 37784 prter3 38920 |
| Copyright terms: Public domain | W3C validator |