| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanl1.1 | ⊢ 𝜑 |
| mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | jctl 523 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl12 702 frc 5582 oeoelem 8519 ercnv 8649 frfi 9176 fin23lem23 10224 divdiv23zi 11881 recp1lt1 12027 divgt0i 12037 divge0i 12038 ltreci 12039 lereci 12040 lt2msqi 12041 le2msqi 12042 msq11i 12043 ltdiv23i 12053 fnn0ind 12578 elfzp1b 13503 elfzm1b 13504 sqrt11i 15294 sqrtmuli 15295 sqrtmsq2i 15297 sqrtlei 15298 sqrtlti 15299 fsum 15629 fprod 15850 blometi 30785 spansnm0i 31632 lnopli 31950 lnfnli 32022 opsqrlem1 32122 opsqrlem6 32127 mdslmd3i 32314 atordi 32366 mdsymlem1 32385 gsummpt2co 33035 finxpreclem4 37459 ptrecube 37680 fdc 37805 prter3 39001 |
| Copyright terms: Public domain | W3C validator |