| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanl1.1 | ⊢ 𝜑 |
| mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | jctl 523 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl12 702 frc 5617 oeoelem 8610 ercnv 8740 frfi 9293 fin23lem23 10340 divdiv23zi 11994 recp1lt1 12140 divgt0i 12150 divge0i 12151 ltreci 12152 lereci 12153 lt2msqi 12154 le2msqi 12155 msq11i 12156 ltdiv23i 12166 fnn0ind 12692 elfzp1b 13618 elfzm1b 13619 sqrt11i 15403 sqrtmuli 15404 sqrtmsq2i 15406 sqrtlei 15407 sqrtlti 15408 fsum 15736 fprod 15957 blometi 30784 spansnm0i 31631 lnopli 31949 lnfnli 32021 opsqrlem1 32121 opsqrlem6 32126 mdslmd3i 32313 atordi 32365 mdsymlem1 32384 gsummpt2co 33042 finxpreclem4 37412 ptrecube 37644 fdc 37769 prter3 38900 |
| Copyright terms: Public domain | W3C validator |