Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanl1.1 | ⊢ 𝜑 |
mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | jctl 524 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpanl12 699 frc 5555 oeoelem 8429 ercnv 8519 frfi 9059 fin23lem23 10082 divdiv23zi 11728 recp1lt1 11873 divgt0i 11883 divge0i 11884 ltreci 11885 lereci 11886 lt2msqi 11887 le2msqi 11888 msq11i 11889 ltdiv23i 11899 fnn0ind 12419 elfzp1b 13333 elfzm1b 13334 sqrt11i 15096 sqrtmuli 15097 sqrtmsq2i 15099 sqrtlei 15100 sqrtlti 15101 fsum 15432 fprod 15651 blometi 29165 spansnm0i 30012 lnopli 30330 lnfnli 30402 opsqrlem1 30502 opsqrlem6 30507 mdslmd3i 30694 atordi 30746 mdsymlem1 30765 gsummpt2co 31308 finxpreclem4 35565 ptrecube 35777 fdc 35903 prter3 36896 |
Copyright terms: Public domain | W3C validator |