Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanl1.1 | ⊢ 𝜑 |
mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | jctl 523 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 579 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpanl12 698 frc 5546 oeoelem 8391 ercnv 8477 frfi 8989 fin23lem23 10013 divdiv23zi 11658 recp1lt1 11803 divgt0i 11813 divge0i 11814 ltreci 11815 lereci 11816 lt2msqi 11817 le2msqi 11818 msq11i 11819 ltdiv23i 11829 fnn0ind 12349 elfzp1b 13262 elfzm1b 13263 sqrt11i 15024 sqrtmuli 15025 sqrtmsq2i 15027 sqrtlei 15028 sqrtlti 15029 fsum 15360 fprod 15579 blometi 29066 spansnm0i 29913 lnopli 30231 lnfnli 30303 opsqrlem1 30403 opsqrlem6 30408 mdslmd3i 30595 atordi 30647 mdsymlem1 30666 gsummpt2co 31210 finxpreclem4 35492 ptrecube 35704 fdc 35830 prter3 36823 |
Copyright terms: Public domain | W3C validator |