![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanl1.1 | ⊢ 𝜑 |
mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | jctl 523 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 579 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanl12 701 frc 5663 oeoelem 8654 ercnv 8784 frfi 9349 fin23lem23 10395 divdiv23zi 12047 recp1lt1 12193 divgt0i 12203 divge0i 12204 ltreci 12205 lereci 12206 lt2msqi 12207 le2msqi 12208 msq11i 12209 ltdiv23i 12219 fnn0ind 12742 elfzp1b 13661 elfzm1b 13662 sqrt11i 15433 sqrtmuli 15434 sqrtmsq2i 15436 sqrtlei 15437 sqrtlti 15438 fsum 15768 fprod 15989 blometi 30835 spansnm0i 31682 lnopli 32000 lnfnli 32072 opsqrlem1 32172 opsqrlem6 32177 mdslmd3i 32364 atordi 32416 mdsymlem1 32435 gsummpt2co 33031 finxpreclem4 37360 ptrecube 37580 fdc 37705 prter3 38838 |
Copyright terms: Public domain | W3C validator |