![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanl1.1 | ⊢ 𝜑 |
mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | jctl 524 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpanl12 700 frc 5642 oeoelem 8597 ercnv 8723 frfi 9287 fin23lem23 10320 divdiv23zi 11966 recp1lt1 12111 divgt0i 12121 divge0i 12122 ltreci 12123 lereci 12124 lt2msqi 12125 le2msqi 12126 msq11i 12127 ltdiv23i 12137 fnn0ind 12660 elfzp1b 13577 elfzm1b 13578 sqrt11i 15330 sqrtmuli 15331 sqrtmsq2i 15333 sqrtlei 15334 sqrtlti 15335 fsum 15665 fprod 15884 blometi 30051 spansnm0i 30898 lnopli 31216 lnfnli 31288 opsqrlem1 31388 opsqrlem6 31393 mdslmd3i 31580 atordi 31632 mdsymlem1 31651 gsummpt2co 32195 finxpreclem4 36270 ptrecube 36483 fdc 36608 prter3 37747 |
Copyright terms: Public domain | W3C validator |