| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanl1.1 | ⊢ 𝜑 |
| mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | jctl 523 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl12 702 frc 5604 oeoelem 8565 ercnv 8695 frfi 9239 fin23lem23 10286 divdiv23zi 11942 recp1lt1 12088 divgt0i 12098 divge0i 12099 ltreci 12100 lereci 12101 lt2msqi 12102 le2msqi 12103 msq11i 12104 ltdiv23i 12114 fnn0ind 12640 elfzp1b 13569 elfzm1b 13570 sqrt11i 15358 sqrtmuli 15359 sqrtmsq2i 15361 sqrtlei 15362 sqrtlti 15363 fsum 15693 fprod 15914 blometi 30739 spansnm0i 31586 lnopli 31904 lnfnli 31976 opsqrlem1 32076 opsqrlem6 32081 mdslmd3i 32268 atordi 32320 mdsymlem1 32339 gsummpt2co 32995 finxpreclem4 37389 ptrecube 37621 fdc 37746 prter3 38882 |
| Copyright terms: Public domain | W3C validator |