Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege105 Structured version   Visualization version   GIF version

Theorem frege105 43926
Description: Proposition 105 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege103.z 𝑍𝑉
Assertion
Ref Expression
frege105 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍)

Proof of Theorem frege105
StepHypRef Expression
1 frege103.z . . 3 𝑍𝑉
21dffrege99 43920 . 2 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍)
3 frege52aid 43816 . 2 (((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) → ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍))
42, 3ax-mp 5 1 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1539  wcel 2107  cun 3931   class class class wbr 5125   I cid 5559  cfv 6542  t+ctcl 15007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-frege52a 43815
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674
This theorem is referenced by:  frege106  43927  frege112  43933
  Copyright terms: Public domain W3C validator