| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege105 | Structured version Visualization version GIF version | ||
| Description: Proposition 105 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege103.z | ⊢ 𝑍 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege105 | ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege103.z | . . 3 ⊢ 𝑍 ∈ 𝑉 | |
| 2 | 1 | dffrege99 43937 | . 2 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) |
| 3 | frege52aid 43833 | . 2 ⊢ (((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) → ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍)) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∪ cun 3929 class class class wbr 5123 I cid 5557 ‘cfv 6541 t+ctcl 15006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-frege52a 43832 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 |
| This theorem is referenced by: frege106 43944 frege112 43950 |
| Copyright terms: Public domain | W3C validator |