![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffrege99 | Structured version Visualization version GIF version |
Description: If 𝑍 is identical with 𝑋 or follows 𝑋 in the 𝑅 -sequence, then we say : "𝑍 belongs to the 𝑅-sequence beginning with 𝑋 " or "𝑋 belongs to the 𝑅-sequence ending with 𝑍". Definition 99 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) |
Ref | Expression |
---|---|
frege99.z | ⊢ 𝑍 ∈ 𝑈 |
Ref | Expression |
---|---|
dffrege99 | ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brun 4981 | . 2 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 ↔ (𝑋(t+‘𝑅)𝑍 ∨ 𝑋 I 𝑍)) | |
2 | df-or 834 | . 2 ⊢ ((𝑋(t+‘𝑅)𝑍 ∨ 𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 I 𝑍)) | |
3 | frege99.z | . . . . . 6 ⊢ 𝑍 ∈ 𝑈 | |
4 | 3 | elexi 3434 | . . . . 5 ⊢ 𝑍 ∈ V |
5 | 4 | ideq 5574 | . . . 4 ⊢ (𝑋 I 𝑍 ↔ 𝑋 = 𝑍) |
6 | eqcom 2785 | . . . 4 ⊢ (𝑋 = 𝑍 ↔ 𝑍 = 𝑋) | |
7 | 5, 6 | bitri 267 | . . 3 ⊢ (𝑋 I 𝑍 ↔ 𝑍 = 𝑋) |
8 | 7 | imbi2i 328 | . 2 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) |
9 | 1, 2, 8 | 3bitrri 290 | 1 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∨ wo 833 = wceq 1507 ∈ wcel 2050 ∪ cun 3829 class class class wbr 4930 I cid 5312 ‘cfv 6190 t+ctcl 14209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pr 5187 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-br 4931 df-opab 4993 df-id 5313 df-xp 5414 df-rel 5415 |
This theorem is referenced by: frege100 39672 frege105 39677 |
Copyright terms: Public domain | W3C validator |