| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffrege99 | Structured version Visualization version GIF version | ||
| Description: If 𝑍 is identical with 𝑋 or follows 𝑋 in the 𝑅 -sequence, then we say : "𝑍 belongs to the 𝑅-sequence beginning with 𝑋 " or "𝑋 belongs to the 𝑅-sequence ending with 𝑍". Definition 99 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege99.z | ⊢ 𝑍 ∈ 𝑈 |
| Ref | Expression |
|---|---|
| dffrege99 | ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brun 5166 | . 2 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 ↔ (𝑋(t+‘𝑅)𝑍 ∨ 𝑋 I 𝑍)) | |
| 2 | df-or 848 | . 2 ⊢ ((𝑋(t+‘𝑅)𝑍 ∨ 𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 I 𝑍)) | |
| 3 | frege99.z | . . . . . 6 ⊢ 𝑍 ∈ 𝑈 | |
| 4 | 3 | elexi 3478 | . . . . 5 ⊢ 𝑍 ∈ V |
| 5 | 4 | ideq 5824 | . . . 4 ⊢ (𝑋 I 𝑍 ↔ 𝑋 = 𝑍) |
| 6 | eqcom 2737 | . . . 4 ⊢ (𝑋 = 𝑍 ↔ 𝑍 = 𝑋) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ (𝑋 I 𝑍 ↔ 𝑍 = 𝑋) |
| 8 | 7 | imbi2i 336 | . 2 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) |
| 9 | 1, 2, 8 | 3bitrri 298 | 1 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3920 class class class wbr 5115 I cid 5540 ‘cfv 6519 t+ctcl 14961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 |
| This theorem is referenced by: frege100 43924 frege105 43929 |
| Copyright terms: Public domain | W3C validator |