| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffrege99 | Structured version Visualization version GIF version | ||
| Description: If 𝑍 is identical with 𝑋 or follows 𝑋 in the 𝑅 -sequence, then we say : "𝑍 belongs to the 𝑅-sequence beginning with 𝑋 " or "𝑋 belongs to the 𝑅-sequence ending with 𝑍". Definition 99 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege99.z | ⊢ 𝑍 ∈ 𝑈 |
| Ref | Expression |
|---|---|
| dffrege99 | ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brun 5144 | . 2 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 ↔ (𝑋(t+‘𝑅)𝑍 ∨ 𝑋 I 𝑍)) | |
| 2 | df-or 848 | . 2 ⊢ ((𝑋(t+‘𝑅)𝑍 ∨ 𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 I 𝑍)) | |
| 3 | frege99.z | . . . . . 6 ⊢ 𝑍 ∈ 𝑈 | |
| 4 | 3 | elexi 3459 | . . . . 5 ⊢ 𝑍 ∈ V |
| 5 | 4 | ideq 5797 | . . . 4 ⊢ (𝑋 I 𝑍 ↔ 𝑋 = 𝑍) |
| 6 | eqcom 2738 | . . . 4 ⊢ (𝑋 = 𝑍 ↔ 𝑍 = 𝑋) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ (𝑋 I 𝑍 ↔ 𝑍 = 𝑋) |
| 8 | 7 | imbi2i 336 | . 2 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) |
| 9 | 1, 2, 8 | 3bitrri 298 | 1 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 class class class wbr 5093 I cid 5513 ‘cfv 6487 t+ctcl 14898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: frege100 44061 frege105 44066 |
| Copyright terms: Public domain | W3C validator |