Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffrege99 Structured version   Visualization version   GIF version

Theorem dffrege99 43974
Description: If 𝑍 is identical with 𝑋 or follows 𝑋 in the 𝑅 -sequence, then we say : "𝑍 belongs to the 𝑅-sequence beginning with 𝑋 " or "𝑋 belongs to the 𝑅-sequence ending with 𝑍". Definition 99 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.)
Hypothesis
Ref Expression
frege99.z 𝑍𝑈
Assertion
Ref Expression
dffrege99 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍)

Proof of Theorem dffrege99
StepHypRef Expression
1 brun 5140 . 2 (𝑋((t+‘𝑅) ∪ I )𝑍 ↔ (𝑋(t+‘𝑅)𝑍𝑋 I 𝑍))
2 df-or 848 . 2 ((𝑋(t+‘𝑅)𝑍𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍𝑋 I 𝑍))
3 frege99.z . . . . . 6 𝑍𝑈
43elexi 3457 . . . . 5 𝑍 ∈ V
54ideq 5790 . . . 4 (𝑋 I 𝑍𝑋 = 𝑍)
6 eqcom 2737 . . . 4 (𝑋 = 𝑍𝑍 = 𝑋)
75, 6bitri 275 . . 3 (𝑋 I 𝑍𝑍 = 𝑋)
87imbi2i 336 . 2 ((¬ 𝑋(t+‘𝑅)𝑍𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋))
91, 2, 83bitrri 298 1 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1541  wcel 2110  cun 3898   class class class wbr 5089   I cid 5508  cfv 6477  t+ctcl 14884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621
This theorem is referenced by:  frege100  43975  frege105  43980
  Copyright terms: Public domain W3C validator