Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffrege99 Structured version   Visualization version   GIF version

Theorem dffrege99 41891
Description: If 𝑍 is identical with 𝑋 or follows 𝑋 in the 𝑅 -sequence, then we say : "𝑍 belongs to the 𝑅-sequence beginning with 𝑋 " or "𝑋 belongs to the 𝑅-sequence ending with 𝑍". Definition 99 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.)
Hypothesis
Ref Expression
frege99.z 𝑍𝑈
Assertion
Ref Expression
dffrege99 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍)

Proof of Theorem dffrege99
StepHypRef Expression
1 brun 5143 . 2 (𝑋((t+‘𝑅) ∪ I )𝑍 ↔ (𝑋(t+‘𝑅)𝑍𝑋 I 𝑍))
2 df-or 845 . 2 ((𝑋(t+‘𝑅)𝑍𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍𝑋 I 𝑍))
3 frege99.z . . . . . 6 𝑍𝑈
43elexi 3460 . . . . 5 𝑍 ∈ V
54ideq 5794 . . . 4 (𝑋 I 𝑍𝑋 = 𝑍)
6 eqcom 2743 . . . 4 (𝑋 = 𝑍𝑍 = 𝑋)
75, 6bitri 274 . . 3 (𝑋 I 𝑍𝑍 = 𝑋)
87imbi2i 335 . 2 ((¬ 𝑋(t+‘𝑅)𝑍𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋))
91, 2, 83bitrri 297 1 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844   = wceq 1540  wcel 2105  cun 3896   class class class wbr 5092   I cid 5517  cfv 6479  t+ctcl 14795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-id 5518  df-xp 5626  df-rel 5627
This theorem is referenced by:  frege100  41892  frege105  41897
  Copyright terms: Public domain W3C validator