Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffrege99 | Structured version Visualization version GIF version |
Description: If 𝑍 is identical with 𝑋 or follows 𝑋 in the 𝑅 -sequence, then we say : "𝑍 belongs to the 𝑅-sequence beginning with 𝑋 " or "𝑋 belongs to the 𝑅-sequence ending with 𝑍". Definition 99 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) |
Ref | Expression |
---|---|
frege99.z | ⊢ 𝑍 ∈ 𝑈 |
Ref | Expression |
---|---|
dffrege99 | ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brun 5143 | . 2 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 ↔ (𝑋(t+‘𝑅)𝑍 ∨ 𝑋 I 𝑍)) | |
2 | df-or 845 | . 2 ⊢ ((𝑋(t+‘𝑅)𝑍 ∨ 𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 I 𝑍)) | |
3 | frege99.z | . . . . . 6 ⊢ 𝑍 ∈ 𝑈 | |
4 | 3 | elexi 3460 | . . . . 5 ⊢ 𝑍 ∈ V |
5 | 4 | ideq 5794 | . . . 4 ⊢ (𝑋 I 𝑍 ↔ 𝑋 = 𝑍) |
6 | eqcom 2743 | . . . 4 ⊢ (𝑋 = 𝑍 ↔ 𝑍 = 𝑋) | |
7 | 5, 6 | bitri 274 | . . 3 ⊢ (𝑋 I 𝑍 ↔ 𝑍 = 𝑋) |
8 | 7 | imbi2i 335 | . 2 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) |
9 | 1, 2, 8 | 3bitrri 297 | 1 ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∪ cun 3896 class class class wbr 5092 I cid 5517 ‘cfv 6479 t+ctcl 14795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 |
This theorem is referenced by: frege100 41892 frege105 41897 |
Copyright terms: Public domain | W3C validator |