| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege107 | Structured version Visualization version GIF version | ||
| Description: Proposition 107 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege107.v | ⊢ 𝑉 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| frege107 | ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege107.v | . . 3 ⊢ 𝑉 ∈ 𝐴 | |
| 2 | 1 | frege106 43930 | . 2 ⊢ (𝑍(t+‘𝑅)𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉) |
| 3 | frege7 43769 | . 2 ⊢ ((𝑍(t+‘𝑅)𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉) → ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉)))) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cun 3920 class class class wbr 5115 I cid 5540 ‘cfv 6519 t+ctcl 14961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-frege1 43751 ax-frege2 43752 ax-frege8 43770 ax-frege28 43791 ax-frege31 43795 ax-frege52a 43818 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 |
| This theorem is referenced by: frege108 43932 |
| Copyright terms: Public domain | W3C validator |