| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege107 | Structured version Visualization version GIF version | ||
| Description: Proposition 107 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege107.v | ⊢ 𝑉 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| frege107 | ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege107.v | . . 3 ⊢ 𝑉 ∈ 𝐴 | |
| 2 | 1 | frege106 44001 | . 2 ⊢ (𝑍(t+‘𝑅)𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉) |
| 3 | frege7 43840 | . 2 ⊢ ((𝑍(t+‘𝑅)𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉) → ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉)))) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∪ cun 3900 class class class wbr 5091 I cid 5510 ‘cfv 6481 t+ctcl 14889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-frege1 43822 ax-frege2 43823 ax-frege8 43841 ax-frege28 43862 ax-frege31 43866 ax-frege52a 43889 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 |
| This theorem is referenced by: frege108 44003 |
| Copyright terms: Public domain | W3C validator |