| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege107 | Structured version Visualization version GIF version | ||
| Description: Proposition 107 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege107.v | ⊢ 𝑉 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| frege107 | ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege107.v | . . 3 ⊢ 𝑉 ∈ 𝐴 | |
| 2 | 1 | frege106 43927 | . 2 ⊢ (𝑍(t+‘𝑅)𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉) |
| 3 | frege7 43766 | . 2 ⊢ ((𝑍(t+‘𝑅)𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉) → ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉)))) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∪ cun 3931 class class class wbr 5125 I cid 5559 ‘cfv 6542 t+ctcl 15007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-frege1 43748 ax-frege2 43749 ax-frege8 43767 ax-frege28 43788 ax-frege31 43792 ax-frege52a 43815 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 |
| This theorem is referenced by: frege108 43929 |
| Copyright terms: Public domain | W3C validator |