![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frexr | Structured version Visualization version GIF version |
Description: A function taking real values, is a function taking extended real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
frexr.1 | β’ (π β πΉ:π΄βΆβ) |
Ref | Expression |
---|---|
frexr | β’ (π β πΉ:π΄βΆβ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frexr.1 | . 2 β’ (π β πΉ:π΄βΆβ) | |
2 | ressxr 11258 | . . 3 β’ β β β* | |
3 | 2 | a1i 11 | . 2 β’ (π β β β β*) |
4 | 1, 3 | fssd 6736 | 1 β’ (π β πΉ:π΄βΆβ*) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wss 3949 βΆwf 6540 βcr 11109 β*cxr 11247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 df-f 6548 df-xr 11252 |
This theorem is referenced by: limsupubuz 44429 limsupreuz 44453 limsupvaluz2 44454 supcnvlimsup 44456 limsupgtlem 44493 liminflimsupclim 44523 climliminflimsup2 44525 climliminflimsup3 44526 climliminflimsup4 44527 xlimliminflimsup 44578 preimaioomnf 45435 incsmf 45458 issmfle 45461 decsmf 45483 smfsupdmmbllem 45560 smfinfdmmbllem 45564 |
Copyright terms: Public domain | W3C validator |