Step | Hyp | Ref
| Expression |
1 | | nfv 1920 |
. . . . . 6
⊢
Ⅎ𝑙𝜑 |
2 | | nfcv 2908 |
. . . . . 6
⊢
Ⅎ𝑙𝐹 |
3 | | limsupubuz.z |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | | uzssre 12586 |
. . . . . . . 8
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
5 | 3, 4 | eqsstri 3959 |
. . . . . . 7
⊢ 𝑍 ⊆
ℝ |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑍 ⊆ ℝ) |
7 | | limsupubuz.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
8 | 7 | frexr 42878 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
9 | | limsupubuz.n |
. . . . . 6
⊢ (𝜑 → (lim sup‘𝐹) ≠
+∞) |
10 | 1, 2, 6, 8, 9 | limsupub 43199 |
. . . . 5
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) |
11 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) |
12 | | nfv 1920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑙 𝑀 ∈ ℤ |
13 | 1, 12 | nfan 1905 |
. . . . . . . . . 10
⊢
Ⅎ𝑙(𝜑 ∧ 𝑀 ∈ ℤ) |
14 | | nfv 1920 |
. . . . . . . . . 10
⊢
Ⅎ𝑙 𝑦 ∈ ℝ |
15 | 13, 14 | nfan 1905 |
. . . . . . . . 9
⊢
Ⅎ𝑙((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) |
16 | | nfv 1920 |
. . . . . . . . 9
⊢
Ⅎ𝑙 𝑘 ∈ ℝ |
17 | 15, 16 | nfan 1905 |
. . . . . . . 8
⊢
Ⅎ𝑙(((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) |
18 | | nfra1 3144 |
. . . . . . . 8
⊢
Ⅎ𝑙∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) |
19 | 17, 18 | nfan 1905 |
. . . . . . 7
⊢
Ⅎ𝑙((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) |
20 | | nfmpt1 5186 |
. . . . . . . . . . 11
⊢
Ⅎ𝑙(𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)) |
21 | 20 | nfrn 5858 |
. . . . . . . . . 10
⊢
Ⅎ𝑙ran
(𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)) |
22 | | nfcv 2908 |
. . . . . . . . . 10
⊢
Ⅎ𝑙ℝ |
23 | | nfcv 2908 |
. . . . . . . . . 10
⊢
Ⅎ𝑙
< |
24 | 21, 22, 23 | nfsup 9171 |
. . . . . . . . 9
⊢
Ⅎ𝑙sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)), ℝ, < ) |
25 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑙
≤ |
26 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑙𝑦 |
27 | 24, 25, 26 | nfbr 5125 |
. . . . . . . 8
⊢
Ⅎ𝑙sup(ran
(𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)), ℝ, < ) ≤ 𝑦 |
28 | 27, 26, 24 | nfif 4494 |
. . . . . . 7
⊢
Ⅎ𝑙if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)), ℝ, < )) |
29 | | breq2 5082 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑖 → (𝑘 ≤ 𝑙 ↔ 𝑘 ≤ 𝑖)) |
30 | | fveq2 6768 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑖 → (𝐹‘𝑙) = (𝐹‘𝑖)) |
31 | 30 | breq1d 5088 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑖 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑖) ≤ 𝑦)) |
32 | 29, 31 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑖 → ((𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ (𝑘 ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑦))) |
33 | 32 | cbvralvw 3380 |
. . . . . . . . . 10
⊢
(∀𝑙 ∈
𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑖 ∈ 𝑍 (𝑘 ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑦)) |
34 | 33 | biimpi 215 |
. . . . . . . . 9
⊢
(∀𝑙 ∈
𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) → ∀𝑖 ∈ 𝑍 (𝑘 ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑦)) |
35 | 34 | adantl 481 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) → ∀𝑖 ∈ 𝑍 (𝑘 ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑦)) |
36 | | simp-4r 780 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑖 ∈ 𝑍 (𝑘 ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑦)) → 𝑀 ∈ ℤ) |
37 | 35, 36 | syldan 590 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) → 𝑀 ∈ ℤ) |
38 | 7 | ad4antr 728 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑖 ∈ 𝑍 (𝑘 ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑦)) → 𝐹:𝑍⟶ℝ) |
39 | 35, 38 | syldan 590 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) → 𝐹:𝑍⟶ℝ) |
40 | | simpllr 772 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑖 ∈ 𝑍 (𝑘 ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑦)) → 𝑦 ∈ ℝ) |
41 | 35, 40 | syldan 590 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) → 𝑦 ∈ ℝ) |
42 | | simplr 765 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑖 ∈ 𝑍 (𝑘 ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑦)) → 𝑘 ∈ ℝ) |
43 | 35, 42 | syldan 590 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) → 𝑘 ∈ ℝ) |
44 | 33 | biimpri 227 |
. . . . . . . 8
⊢
(∀𝑖 ∈
𝑍 (𝑘 ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑦) → ∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) |
45 | 35, 44 | syl 17 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) → ∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) |
46 | | eqid 2739 |
. . . . . . 7
⊢
if((⌈‘𝑘)
≤ 𝑀, 𝑀, (⌈‘𝑘)) = if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘)) |
47 | | eqid 2739 |
. . . . . . 7
⊢ sup(ran
(𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)), ℝ, < ) = sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)), ℝ, < ) |
48 | | eqid 2739 |
. . . . . . 7
⊢
if(sup(ran (𝑙 ∈
(𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)), ℝ, < )) = if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹‘𝑙)), ℝ, < )) |
49 | 19, 28, 37, 3, 39, 41, 43, 45, 46, 47, 48 | limsupubuzlem 43207 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝐹‘𝑙) ≤ 𝑥) |
50 | 49 | rexlimdva2 3217 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝐹‘𝑙) ≤ 𝑥)) |
51 | 50 | rexlimdva 3214 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝐹‘𝑙) ≤ 𝑥)) |
52 | 11, 51 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝐹‘𝑙) ≤ 𝑥) |
53 | 3 | a1i 11 |
. . . . . 6
⊢ (¬
𝑀 ∈ ℤ →
𝑍 =
(ℤ≥‘𝑀)) |
54 | | uz0 42906 |
. . . . . 6
⊢ (¬
𝑀 ∈ ℤ →
(ℤ≥‘𝑀) = ∅) |
55 | 53, 54 | eqtrd 2779 |
. . . . 5
⊢ (¬
𝑀 ∈ ℤ →
𝑍 =
∅) |
56 | | 0red 10962 |
. . . . . 6
⊢ (𝑍 = ∅ → 0 ∈
ℝ) |
57 | | rzal 4444 |
. . . . . 6
⊢ (𝑍 = ∅ → ∀𝑙 ∈ 𝑍 (𝐹‘𝑙) ≤ 0) |
58 | | brralrspcev 5138 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ ∀𝑙 ∈ 𝑍 (𝐹‘𝑙) ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝐹‘𝑙) ≤ 𝑥) |
59 | 56, 57, 58 | syl2anc 583 |
. . . . 5
⊢ (𝑍 = ∅ → ∃𝑥 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝐹‘𝑙) ≤ 𝑥) |
60 | 55, 59 | syl 17 |
. . . 4
⊢ (¬
𝑀 ∈ ℤ →
∃𝑥 ∈ ℝ
∀𝑙 ∈ 𝑍 (𝐹‘𝑙) ≤ 𝑥) |
61 | 60 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝐹‘𝑙) ≤ 𝑥) |
62 | 52, 61 | pm2.61dan 809 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑙 ∈ 𝑍 (𝐹‘𝑙) ≤ 𝑥) |
63 | | limsupubuz.j |
. . . . . 6
⊢
Ⅎ𝑗𝐹 |
64 | | nfcv 2908 |
. . . . . 6
⊢
Ⅎ𝑗𝑙 |
65 | 63, 64 | nffv 6778 |
. . . . 5
⊢
Ⅎ𝑗(𝐹‘𝑙) |
66 | | nfcv 2908 |
. . . . 5
⊢
Ⅎ𝑗
≤ |
67 | | nfcv 2908 |
. . . . 5
⊢
Ⅎ𝑗𝑥 |
68 | 65, 66, 67 | nfbr 5125 |
. . . 4
⊢
Ⅎ𝑗(𝐹‘𝑙) ≤ 𝑥 |
69 | | nfv 1920 |
. . . 4
⊢
Ⅎ𝑙(𝐹‘𝑗) ≤ 𝑥 |
70 | | fveq2 6768 |
. . . . 5
⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) |
71 | 70 | breq1d 5088 |
. . . 4
⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑥)) |
72 | 68, 69, 71 | cbvralw 3371 |
. . 3
⊢
(∀𝑙 ∈
𝑍 (𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ≤ 𝑥) |
73 | 72 | rexbii 3179 |
. 2
⊢
(∃𝑥 ∈
ℝ ∀𝑙 ∈
𝑍 (𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ≤ 𝑥) |
74 | 62, 73 | sylib 217 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ≤ 𝑥) |