Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuz Structured version   Visualization version   GIF version

Theorem limsupubuz 43208
Description: For a real-valued function on a set of upper integers, if the superior limit is not +∞, then the function is bounded above. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuz.j 𝑗𝐹
limsupubuz.z 𝑍 = (ℤ𝑀)
limsupubuz.f (𝜑𝐹:𝑍⟶ℝ)
limsupubuz.n (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupubuz (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑗)   𝑀(𝑗)

Proof of Theorem limsupubuz
Dummy variables 𝑖 𝑘 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1920 . . . . . 6 𝑙𝜑
2 nfcv 2908 . . . . . 6 𝑙𝐹
3 limsupubuz.z . . . . . . . 8 𝑍 = (ℤ𝑀)
4 uzssre 12586 . . . . . . . 8 (ℤ𝑀) ⊆ ℝ
53, 4eqsstri 3959 . . . . . . 7 𝑍 ⊆ ℝ
65a1i 11 . . . . . 6 (𝜑𝑍 ⊆ ℝ)
7 limsupubuz.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ)
87frexr 42878 . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
9 limsupubuz.n . . . . . 6 (𝜑 → (lim sup‘𝐹) ≠ +∞)
101, 2, 6, 8, 9limsupub 43199 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
1110adantr 480 . . . 4 ((𝜑𝑀 ∈ ℤ) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
12 nfv 1920 . . . . . . . . . . 11 𝑙 𝑀 ∈ ℤ
131, 12nfan 1905 . . . . . . . . . 10 𝑙(𝜑𝑀 ∈ ℤ)
14 nfv 1920 . . . . . . . . . 10 𝑙 𝑦 ∈ ℝ
1513, 14nfan 1905 . . . . . . . . 9 𝑙((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ)
16 nfv 1920 . . . . . . . . 9 𝑙 𝑘 ∈ ℝ
1715, 16nfan 1905 . . . . . . . 8 𝑙(((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
18 nfra1 3144 . . . . . . . 8 𝑙𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)
1917, 18nfan 1905 . . . . . . 7 𝑙((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
20 nfmpt1 5186 . . . . . . . . . . 11 𝑙(𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙))
2120nfrn 5858 . . . . . . . . . 10 𝑙ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙))
22 nfcv 2908 . . . . . . . . . 10 𝑙
23 nfcv 2908 . . . . . . . . . 10 𝑙 <
2421, 22, 23nfsup 9171 . . . . . . . . 9 𝑙sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )
25 nfcv 2908 . . . . . . . . 9 𝑙
26 nfcv 2908 . . . . . . . . 9 𝑙𝑦
2724, 25, 26nfbr 5125 . . . . . . . 8 𝑙sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦
2827, 26, 24nfif 4494 . . . . . . 7 𝑙if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ))
29 breq2 5082 . . . . . . . . . . . 12 (𝑙 = 𝑖 → (𝑘𝑙𝑘𝑖))
30 fveq2 6768 . . . . . . . . . . . . 13 (𝑙 = 𝑖 → (𝐹𝑙) = (𝐹𝑖))
3130breq1d 5088 . . . . . . . . . . . 12 (𝑙 = 𝑖 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑖) ≤ 𝑦))
3229, 31imbi12d 344 . . . . . . . . . . 11 (𝑙 = 𝑖 → ((𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)))
3332cbvralvw 3380 . . . . . . . . . 10 (∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
3433biimpi 215 . . . . . . . . 9 (∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
3534adantl 481 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
36 simp-4r 780 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑀 ∈ ℤ)
3735, 36syldan 590 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑀 ∈ ℤ)
387ad4antr 728 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝐹:𝑍⟶ℝ)
3935, 38syldan 590 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝐹:𝑍⟶ℝ)
40 simpllr 772 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑦 ∈ ℝ)
4135, 40syldan 590 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑦 ∈ ℝ)
42 simplr 765 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑘 ∈ ℝ)
4335, 42syldan 590 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑘 ∈ ℝ)
4433biimpri 227 . . . . . . . 8 (∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦) → ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
4535, 44syl 17 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
46 eqid 2739 . . . . . . 7 if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘)) = if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))
47 eqid 2739 . . . . . . 7 sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) = sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )
48 eqid 2739 . . . . . . 7 if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )) = if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ))
4919, 28, 37, 3, 39, 41, 43, 45, 46, 47, 48limsupubuzlem 43207 . . . . . 6 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
5049rexlimdva2 3217 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥))
5150rexlimdva 3214 . . . 4 ((𝜑𝑀 ∈ ℤ) → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥))
5211, 51mpd 15 . . 3 ((𝜑𝑀 ∈ ℤ) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
533a1i 11 . . . . . 6 𝑀 ∈ ℤ → 𝑍 = (ℤ𝑀))
54 uz0 42906 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
5553, 54eqtrd 2779 . . . . 5 𝑀 ∈ ℤ → 𝑍 = ∅)
56 0red 10962 . . . . . 6 (𝑍 = ∅ → 0 ∈ ℝ)
57 rzal 4444 . . . . . 6 (𝑍 = ∅ → ∀𝑙𝑍 (𝐹𝑙) ≤ 0)
58 brralrspcev 5138 . . . . . 6 ((0 ∈ ℝ ∧ ∀𝑙𝑍 (𝐹𝑙) ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
5956, 57, 58syl2anc 583 . . . . 5 (𝑍 = ∅ → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6055, 59syl 17 . . . 4 𝑀 ∈ ℤ → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6160adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6252, 61pm2.61dan 809 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
63 limsupubuz.j . . . . . 6 𝑗𝐹
64 nfcv 2908 . . . . . 6 𝑗𝑙
6563, 64nffv 6778 . . . . 5 𝑗(𝐹𝑙)
66 nfcv 2908 . . . . 5 𝑗
67 nfcv 2908 . . . . 5 𝑗𝑥
6865, 66, 67nfbr 5125 . . . 4 𝑗(𝐹𝑙) ≤ 𝑥
69 nfv 1920 . . . 4 𝑙(𝐹𝑗) ≤ 𝑥
70 fveq2 6768 . . . . 5 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
7170breq1d 5088 . . . 4 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
7268, 69, 71cbvralw 3371 . . 3 (∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
7372rexbii 3179 . 2 (∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
7462, 73sylib 217 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109  wnfc 2888  wne 2944  wral 3065  wrex 3066  wss 3891  c0 4261  ifcif 4464   class class class wbr 5078  cmpt 5161  ran crn 5589  wf 6426  cfv 6430  (class class class)co 7268  supcsup 9160  cr 10854  0cc0 10855  +∞cpnf 10990   < clt 10993  cle 10994  cz 12302  cuz 12564  ...cfz 13221  cceil 13492  lim supclsp 15160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-ico 13067  df-fz 13222  df-fl 13493  df-ceil 13494  df-limsup 15161
This theorem is referenced by:  limsupubuzmpt  43214  limsupvaluz2  43233  supcnvlimsup  43235
  Copyright terms: Public domain W3C validator