Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuz Structured version   Visualization version   GIF version

Theorem limsupubuz 45669
Description: For a real-valued function on a set of upper integers, if the superior limit is not +∞, then the function is bounded above. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuz.j 𝑗𝐹
limsupubuz.z 𝑍 = (ℤ𝑀)
limsupubuz.f (𝜑𝐹:𝑍⟶ℝ)
limsupubuz.n (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupubuz (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑗)   𝑀(𝑗)

Proof of Theorem limsupubuz
Dummy variables 𝑖 𝑘 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1912 . . . . . 6 𝑙𝜑
2 nfcv 2903 . . . . . 6 𝑙𝐹
3 limsupubuz.z . . . . . . . 8 𝑍 = (ℤ𝑀)
4 uzssre 12898 . . . . . . . 8 (ℤ𝑀) ⊆ ℝ
53, 4eqsstri 4030 . . . . . . 7 𝑍 ⊆ ℝ
65a1i 11 . . . . . 6 (𝜑𝑍 ⊆ ℝ)
7 limsupubuz.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ)
87frexr 45335 . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
9 limsupubuz.n . . . . . 6 (𝜑 → (lim sup‘𝐹) ≠ +∞)
101, 2, 6, 8, 9limsupub 45660 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
1110adantr 480 . . . 4 ((𝜑𝑀 ∈ ℤ) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
12 nfv 1912 . . . . . . . . . . 11 𝑙 𝑀 ∈ ℤ
131, 12nfan 1897 . . . . . . . . . 10 𝑙(𝜑𝑀 ∈ ℤ)
14 nfv 1912 . . . . . . . . . 10 𝑙 𝑦 ∈ ℝ
1513, 14nfan 1897 . . . . . . . . 9 𝑙((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ)
16 nfv 1912 . . . . . . . . 9 𝑙 𝑘 ∈ ℝ
1715, 16nfan 1897 . . . . . . . 8 𝑙(((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
18 nfra1 3282 . . . . . . . 8 𝑙𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)
1917, 18nfan 1897 . . . . . . 7 𝑙((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
20 nfmpt1 5256 . . . . . . . . . . 11 𝑙(𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙))
2120nfrn 5966 . . . . . . . . . 10 𝑙ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙))
22 nfcv 2903 . . . . . . . . . 10 𝑙
23 nfcv 2903 . . . . . . . . . 10 𝑙 <
2421, 22, 23nfsup 9489 . . . . . . . . 9 𝑙sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )
25 nfcv 2903 . . . . . . . . 9 𝑙
26 nfcv 2903 . . . . . . . . 9 𝑙𝑦
2724, 25, 26nfbr 5195 . . . . . . . 8 𝑙sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦
2827, 26, 24nfif 4561 . . . . . . 7 𝑙if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ))
29 breq2 5152 . . . . . . . . . . . 12 (𝑙 = 𝑖 → (𝑘𝑙𝑘𝑖))
30 fveq2 6907 . . . . . . . . . . . . 13 (𝑙 = 𝑖 → (𝐹𝑙) = (𝐹𝑖))
3130breq1d 5158 . . . . . . . . . . . 12 (𝑙 = 𝑖 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑖) ≤ 𝑦))
3229, 31imbi12d 344 . . . . . . . . . . 11 (𝑙 = 𝑖 → ((𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)))
3332cbvralvw 3235 . . . . . . . . . 10 (∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
3433biimpi 216 . . . . . . . . 9 (∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
3534adantl 481 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
36 simp-4r 784 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑀 ∈ ℤ)
3735, 36syldan 591 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑀 ∈ ℤ)
387ad4antr 732 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝐹:𝑍⟶ℝ)
3935, 38syldan 591 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝐹:𝑍⟶ℝ)
40 simpllr 776 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑦 ∈ ℝ)
4135, 40syldan 591 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑦 ∈ ℝ)
42 simplr 769 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑘 ∈ ℝ)
4335, 42syldan 591 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑘 ∈ ℝ)
4433biimpri 228 . . . . . . . 8 (∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦) → ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
4535, 44syl 17 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
46 eqid 2735 . . . . . . 7 if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘)) = if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))
47 eqid 2735 . . . . . . 7 sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) = sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )
48 eqid 2735 . . . . . . 7 if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )) = if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ))
4919, 28, 37, 3, 39, 41, 43, 45, 46, 47, 48limsupubuzlem 45668 . . . . . 6 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
5049rexlimdva2 3155 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥))
5150rexlimdva 3153 . . . 4 ((𝜑𝑀 ∈ ℤ) → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥))
5211, 51mpd 15 . . 3 ((𝜑𝑀 ∈ ℤ) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
533a1i 11 . . . . . 6 𝑀 ∈ ℤ → 𝑍 = (ℤ𝑀))
54 uz0 45362 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
5553, 54eqtrd 2775 . . . . 5 𝑀 ∈ ℤ → 𝑍 = ∅)
56 0red 11262 . . . . . 6 (𝑍 = ∅ → 0 ∈ ℝ)
57 rzal 4515 . . . . . 6 (𝑍 = ∅ → ∀𝑙𝑍 (𝐹𝑙) ≤ 0)
58 brralrspcev 5208 . . . . . 6 ((0 ∈ ℝ ∧ ∀𝑙𝑍 (𝐹𝑙) ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
5956, 57, 58syl2anc 584 . . . . 5 (𝑍 = ∅ → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6055, 59syl 17 . . . 4 𝑀 ∈ ℤ → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6160adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6252, 61pm2.61dan 813 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
63 limsupubuz.j . . . . . 6 𝑗𝐹
64 nfcv 2903 . . . . . 6 𝑗𝑙
6563, 64nffv 6917 . . . . 5 𝑗(𝐹𝑙)
66 nfcv 2903 . . . . 5 𝑗
67 nfcv 2903 . . . . 5 𝑗𝑥
6865, 66, 67nfbr 5195 . . . 4 𝑗(𝐹𝑙) ≤ 𝑥
69 nfv 1912 . . . 4 𝑙(𝐹𝑗) ≤ 𝑥
70 fveq2 6907 . . . . 5 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
7170breq1d 5158 . . . 4 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
7268, 69, 71cbvralw 3304 . . 3 (∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
7372rexbii 3092 . 2 (∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
7462, 73sylib 218 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wnfc 2888  wne 2938  wral 3059  wrex 3068  wss 3963  c0 4339  ifcif 4531   class class class wbr 5148  cmpt 5231  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  supcsup 9478  cr 11152  0cc0 11153  +∞cpnf 11290   < clt 11293  cle 11294  cz 12611  cuz 12876  ...cfz 13544  cceil 13828  lim supclsp 15503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-ico 13390  df-fz 13545  df-fl 13829  df-ceil 13830  df-limsup 15504
This theorem is referenced by:  limsupubuzmpt  45675  limsupvaluz2  45694  supcnvlimsup  45696
  Copyright terms: Public domain W3C validator