Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuz Structured version   Visualization version   GIF version

Theorem limsupubuz 45694
Description: For a real-valued function on a set of upper integers, if the superior limit is not +∞, then the function is bounded above. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuz.j 𝑗𝐹
limsupubuz.z 𝑍 = (ℤ𝑀)
limsupubuz.f (𝜑𝐹:𝑍⟶ℝ)
limsupubuz.n (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupubuz (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑗)   𝑀(𝑗)

Proof of Theorem limsupubuz
Dummy variables 𝑖 𝑘 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . 6 𝑙𝜑
2 nfcv 2891 . . . . . 6 𝑙𝐹
3 limsupubuz.z . . . . . . . 8 𝑍 = (ℤ𝑀)
4 uzssre 12757 . . . . . . . 8 (ℤ𝑀) ⊆ ℝ
53, 4eqsstri 3982 . . . . . . 7 𝑍 ⊆ ℝ
65a1i 11 . . . . . 6 (𝜑𝑍 ⊆ ℝ)
7 limsupubuz.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ)
87frexr 45364 . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
9 limsupubuz.n . . . . . 6 (𝜑 → (lim sup‘𝐹) ≠ +∞)
101, 2, 6, 8, 9limsupub 45685 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
1110adantr 480 . . . 4 ((𝜑𝑀 ∈ ℤ) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
12 nfv 1914 . . . . . . . . . . 11 𝑙 𝑀 ∈ ℤ
131, 12nfan 1899 . . . . . . . . . 10 𝑙(𝜑𝑀 ∈ ℤ)
14 nfv 1914 . . . . . . . . . 10 𝑙 𝑦 ∈ ℝ
1513, 14nfan 1899 . . . . . . . . 9 𝑙((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ)
16 nfv 1914 . . . . . . . . 9 𝑙 𝑘 ∈ ℝ
1715, 16nfan 1899 . . . . . . . 8 𝑙(((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
18 nfra1 3253 . . . . . . . 8 𝑙𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)
1917, 18nfan 1899 . . . . . . 7 𝑙((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
20 nfmpt1 5191 . . . . . . . . . . 11 𝑙(𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙))
2120nfrn 5894 . . . . . . . . . 10 𝑙ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙))
22 nfcv 2891 . . . . . . . . . 10 𝑙
23 nfcv 2891 . . . . . . . . . 10 𝑙 <
2421, 22, 23nfsup 9341 . . . . . . . . 9 𝑙sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )
25 nfcv 2891 . . . . . . . . 9 𝑙
26 nfcv 2891 . . . . . . . . 9 𝑙𝑦
2724, 25, 26nfbr 5139 . . . . . . . 8 𝑙sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦
2827, 26, 24nfif 4507 . . . . . . 7 𝑙if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ))
29 breq2 5096 . . . . . . . . . . . 12 (𝑙 = 𝑖 → (𝑘𝑙𝑘𝑖))
30 fveq2 6822 . . . . . . . . . . . . 13 (𝑙 = 𝑖 → (𝐹𝑙) = (𝐹𝑖))
3130breq1d 5102 . . . . . . . . . . . 12 (𝑙 = 𝑖 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑖) ≤ 𝑦))
3229, 31imbi12d 344 . . . . . . . . . . 11 (𝑙 = 𝑖 → ((𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)))
3332cbvralvw 3207 . . . . . . . . . 10 (∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
3433biimpi 216 . . . . . . . . 9 (∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
3534adantl 481 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
36 simp-4r 783 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑀 ∈ ℤ)
3735, 36syldan 591 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑀 ∈ ℤ)
387ad4antr 732 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝐹:𝑍⟶ℝ)
3935, 38syldan 591 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝐹:𝑍⟶ℝ)
40 simpllr 775 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑦 ∈ ℝ)
4135, 40syldan 591 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑦 ∈ ℝ)
42 simplr 768 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑘 ∈ ℝ)
4335, 42syldan 591 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑘 ∈ ℝ)
4433biimpri 228 . . . . . . . 8 (∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦) → ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
4535, 44syl 17 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
46 eqid 2729 . . . . . . 7 if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘)) = if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))
47 eqid 2729 . . . . . . 7 sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) = sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )
48 eqid 2729 . . . . . . 7 if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )) = if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ))
4919, 28, 37, 3, 39, 41, 43, 45, 46, 47, 48limsupubuzlem 45693 . . . . . 6 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
5049rexlimdva2 3132 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥))
5150rexlimdva 3130 . . . 4 ((𝜑𝑀 ∈ ℤ) → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥))
5211, 51mpd 15 . . 3 ((𝜑𝑀 ∈ ℤ) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
533a1i 11 . . . . . 6 𝑀 ∈ ℤ → 𝑍 = (ℤ𝑀))
54 uz0 45391 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
5553, 54eqtrd 2764 . . . . 5 𝑀 ∈ ℤ → 𝑍 = ∅)
56 0red 11118 . . . . . 6 (𝑍 = ∅ → 0 ∈ ℝ)
57 rzal 4460 . . . . . 6 (𝑍 = ∅ → ∀𝑙𝑍 (𝐹𝑙) ≤ 0)
58 brralrspcev 5152 . . . . . 6 ((0 ∈ ℝ ∧ ∀𝑙𝑍 (𝐹𝑙) ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
5956, 57, 58syl2anc 584 . . . . 5 (𝑍 = ∅ → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6055, 59syl 17 . . . 4 𝑀 ∈ ℤ → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6160adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6252, 61pm2.61dan 812 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
63 limsupubuz.j . . . . . 6 𝑗𝐹
64 nfcv 2891 . . . . . 6 𝑗𝑙
6563, 64nffv 6832 . . . . 5 𝑗(𝐹𝑙)
66 nfcv 2891 . . . . 5 𝑗
67 nfcv 2891 . . . . 5 𝑗𝑥
6865, 66, 67nfbr 5139 . . . 4 𝑗(𝐹𝑙) ≤ 𝑥
69 nfv 1914 . . . 4 𝑙(𝐹𝑗) ≤ 𝑥
70 fveq2 6822 . . . . 5 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
7170breq1d 5102 . . . 4 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
7268, 69, 71cbvralw 3271 . . 3 (∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
7372rexbii 3076 . 2 (∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
7462, 73sylib 218 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  wss 3903  c0 4284  ifcif 4476   class class class wbr 5092  cmpt 5173  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  supcsup 9330  cr 11008  0cc0 11009  +∞cpnf 11146   < clt 11149  cle 11150  cz 12471  cuz 12735  ...cfz 13410  cceil 13695  lim supclsp 15377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-ico 13254  df-fz 13411  df-fl 13696  df-ceil 13697  df-limsup 15378
This theorem is referenced by:  limsupubuzmpt  45700  limsupvaluz2  45719  supcnvlimsup  45721
  Copyright terms: Public domain W3C validator