Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflimsupclim Structured version   Visualization version   GIF version

Theorem liminflimsupclim 42449
Description: A sequence of real numbers converges if its inferior limit is real, and it is greater than or equal to the superior limit (in such a case, they are actually equal, see liminflelimsupuz 42427). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflimsupclim.1 (𝜑𝑀 ∈ ℤ)
liminflimsupclim.2 𝑍 = (ℤ𝑀)
liminflimsupclim.3 (𝜑𝐹:𝑍⟶ℝ)
liminflimsupclim.4 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminflimsupclim.5 (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
Assertion
Ref Expression
liminflimsupclim (𝜑𝐹 ∈ dom ⇝ )

Proof of Theorem liminflimsupclim
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 14841 . . 3 Rel ⇝
21a1i 11 . 2 (𝜑 → Rel ⇝ )
3 liminflimsupclim.3 . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
4 liminflimsupclim.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
54fvexi 6659 . . . . . . . . . 10 𝑍 ∈ V
65a1i 11 . . . . . . . . 9 (𝜑𝑍 ∈ V)
73, 6fexd 6967 . . . . . . . 8 (𝜑𝐹 ∈ V)
87limsupcld 42332 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
9 liminflimsupclim.4 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
109rexrd 10680 . . . . . . 7 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
11 liminflimsupclim.5 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
12 liminflimsupclim.1 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
133frexr 42019 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
1412, 4, 13liminflelimsupuz 42427 . . . . . . 7 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
158, 10, 11, 14xrletrid 12536 . . . . . 6 (𝜑 → (lim sup‘𝐹) = (lim inf‘𝐹))
1615, 9eqeltrd 2890 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1716recnd 10658 . . . 4 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
18 nfcv 2955 . . . . . . . . . 10 𝑘𝐹
1912adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
203adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
219adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (lim inf‘𝐹) ∈ ℝ)
22 simpr 488 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
2318, 19, 4, 20, 21, 22liminflt 42447 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥))
2421ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim inf‘𝐹) ∈ ℝ)
253ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ)
264uztrn2 12250 . . . . . . . . . . . . . . . . 17 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2726adantll 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2825, 27ffvelrnd 6829 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
2928adantllr 718 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
3022ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
31 rpre 12385 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3230, 31syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
3324, 29, 32ltsubadd2d 11227 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑥)))
3433bicomd 226 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
3528recnd 10658 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
3615eqcomd 2804 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))
3736, 17eqeltrd 2890 . . . . . . . . . . . . . . . . . 18 (𝜑 → (lim inf‘𝐹) ∈ ℂ)
3837ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim inf‘𝐹) ∈ ℂ)
3935, 38negsubdi2d 11002 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → -((𝐹𝑘) − (lim inf‘𝐹)) = ((lim inf‘𝐹) − (𝐹𝑘)))
4039breq1d 5040 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
4140adantllr 718 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
4241bicomd 226 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ -((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥))
4329, 24resubcld 11057 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (lim inf‘𝐹)) ∈ ℝ)
44 ltnegcon1 11130 . . . . . . . . . . . . . 14 ((((𝐹𝑘) − (lim inf‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4543, 32, 44syl2anc 587 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4642, 45bitrd 282 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4736oveq2d 7151 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑘) − (lim inf‘𝐹)) = ((𝐹𝑘) − (lim sup‘𝐹)))
4847breq2d 5042 . . . . . . . . . . . . 13 (𝜑 → (-𝑥 < ((𝐹𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
4948ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-𝑥 < ((𝐹𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5034, 46, 493bitrd 308 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5150ralbidva 3161 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5251rexbidva 3255 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5323, 52mpbid 235 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)))
5416adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (lim sup‘𝐹) ∈ ℝ)
5518, 19, 4, 20, 54, 22limsupgt 42420 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹))
5654ad2antrr 725 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim sup‘𝐹) ∈ ℝ)
57 ltsub23 11109 . . . . . . . . . . . 12 (((𝐹𝑘) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (lim sup‘𝐹) ∈ ℝ) → (((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
5829, 32, 56, 57syl3anc 1368 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
5958ralbidva 3161 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6059rexbidva 3255 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6155, 60mpbid 235 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)
6253, 61jca 515 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
634rexanuz2 14701 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6462, 63sylibr 237 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
65 simplll 774 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
66 simpllr 775 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
6726adantll 713 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
68 simpr 488 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
693ffvelrnda 6828 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
7016adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (lim sup‘𝐹) ∈ ℝ)
7169, 70resubcld 11057 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ)
7271adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ)
7331ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥 ∈ ℝ)
74 abslt 14666 . . . . . . . . . . . . 13 ((((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7572, 73, 74syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7675adantr 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7768, 76mpbird 260 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
7877ex 416 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
7965, 66, 67, 78syl21anc 836 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8079ralimdva 3144 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8180reximdva 3233 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8264, 81mpd 15 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
8382ralrimiva 3149 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
8417, 83jca 515 . . 3 (𝜑 → ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
85 ax-resscn 10583 . . . . . 6 ℝ ⊆ ℂ
8685a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
873, 86fssd 6502 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
8818, 12, 4, 87climuz 42386 . . 3 (𝜑 → (𝐹 ⇝ (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)))
8984, 88mpbird 260 . 2 (𝜑𝐹 ⇝ (lim sup‘𝐹))
90 releldm 5778 . 2 ((Rel ⇝ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → 𝐹 ∈ dom ⇝ )
912, 89, 90syl2anc 587 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  wss 3881   class class class wbr 5030  dom cdm 5519  Rel wrel 5524  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525   + caddc 10529   < clt 10664  cle 10665  cmin 10859  -cneg 10860  cz 11969  cuz 12231  +crp 12377  abscabs 14585  lim supclsp 14819  cli 14833  lim infclsi 42393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-ioo 12730  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-ceil 13158  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-liminf 42394
This theorem is referenced by:  climliminflimsup  42450  climliminflimsup2  42451
  Copyright terms: Public domain W3C validator