Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflimsupclim Structured version   Visualization version   GIF version

Theorem liminflimsupclim 44038
Description: A sequence of real numbers converges if its inferior limit is real, and it is greater than or equal to the superior limit (in such a case, they are actually equal, see liminflelimsupuz 44016). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflimsupclim.1 (𝜑𝑀 ∈ ℤ)
liminflimsupclim.2 𝑍 = (ℤ𝑀)
liminflimsupclim.3 (𝜑𝐹:𝑍⟶ℝ)
liminflimsupclim.4 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminflimsupclim.5 (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
Assertion
Ref Expression
liminflimsupclim (𝜑𝐹 ∈ dom ⇝ )

Proof of Theorem liminflimsupclim
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 15374 . . 3 Rel ⇝
21a1i 11 . 2 (𝜑 → Rel ⇝ )
3 liminflimsupclim.3 . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
4 liminflimsupclim.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
54fvexi 6856 . . . . . . . . . 10 𝑍 ∈ V
65a1i 11 . . . . . . . . 9 (𝜑𝑍 ∈ V)
73, 6fexd 7177 . . . . . . . 8 (𝜑𝐹 ∈ V)
87limsupcld 43921 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
9 liminflimsupclim.4 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
109rexrd 11205 . . . . . . 7 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
11 liminflimsupclim.5 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
12 liminflimsupclim.1 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
133frexr 43609 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
1412, 4, 13liminflelimsupuz 44016 . . . . . . 7 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
158, 10, 11, 14xrletrid 13074 . . . . . 6 (𝜑 → (lim sup‘𝐹) = (lim inf‘𝐹))
1615, 9eqeltrd 2838 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1716recnd 11183 . . . 4 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
18 nfcv 2907 . . . . . . . . . 10 𝑘𝐹
1912adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
203adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
219adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (lim inf‘𝐹) ∈ ℝ)
22 simpr 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
2318, 19, 4, 20, 21, 22liminflt 44036 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥))
2421ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim inf‘𝐹) ∈ ℝ)
253ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ)
264uztrn2 12782 . . . . . . . . . . . . . . . . 17 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2726adantll 712 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2825, 27ffvelcdmd 7036 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
2928adantllr 717 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
3022ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
31 rpre 12923 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3230, 31syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
3324, 29, 32ltsubadd2d 11753 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑥)))
3433bicomd 222 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
3528recnd 11183 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
3615eqcomd 2742 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))
3736, 17eqeltrd 2838 . . . . . . . . . . . . . . . . . 18 (𝜑 → (lim inf‘𝐹) ∈ ℂ)
3837ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim inf‘𝐹) ∈ ℂ)
3935, 38negsubdi2d 11528 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → -((𝐹𝑘) − (lim inf‘𝐹)) = ((lim inf‘𝐹) − (𝐹𝑘)))
4039breq1d 5115 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
4140adantllr 717 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
4241bicomd 222 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ -((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥))
4329, 24resubcld 11583 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (lim inf‘𝐹)) ∈ ℝ)
44 ltnegcon1 11656 . . . . . . . . . . . . . 14 ((((𝐹𝑘) − (lim inf‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4543, 32, 44syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4642, 45bitrd 278 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4736oveq2d 7373 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑘) − (lim inf‘𝐹)) = ((𝐹𝑘) − (lim sup‘𝐹)))
4847breq2d 5117 . . . . . . . . . . . . 13 (𝜑 → (-𝑥 < ((𝐹𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
4948ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-𝑥 < ((𝐹𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5034, 46, 493bitrd 304 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5150ralbidva 3172 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5251rexbidva 3173 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5323, 52mpbid 231 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)))
5416adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (lim sup‘𝐹) ∈ ℝ)
5518, 19, 4, 20, 54, 22limsupgt 44009 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹))
5654ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim sup‘𝐹) ∈ ℝ)
57 ltsub23 11635 . . . . . . . . . . . 12 (((𝐹𝑘) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (lim sup‘𝐹) ∈ ℝ) → (((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
5829, 32, 56, 57syl3anc 1371 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
5958ralbidva 3172 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6059rexbidva 3173 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6155, 60mpbid 231 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)
6253, 61jca 512 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
634rexanuz2 15234 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6462, 63sylibr 233 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
65 simplll 773 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
66 simpllr 774 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
6726adantll 712 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
68 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
693ffvelcdmda 7035 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
7016adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (lim sup‘𝐹) ∈ ℝ)
7169, 70resubcld 11583 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ)
7271adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ)
7331ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥 ∈ ℝ)
74 abslt 15199 . . . . . . . . . . . . 13 ((((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7572, 73, 74syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7675adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7768, 76mpbird 256 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
7877ex 413 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
7965, 66, 67, 78syl21anc 836 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8079ralimdva 3164 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8180reximdva 3165 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8264, 81mpd 15 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
8382ralrimiva 3143 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
8417, 83jca 512 . . 3 (𝜑 → ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
85 ax-resscn 11108 . . . . . 6 ℝ ⊆ ℂ
8685a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
873, 86fssd 6686 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
8818, 12, 4, 87climuz 43975 . . 3 (𝜑 → (𝐹 ⇝ (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)))
8984, 88mpbird 256 . 2 (𝜑𝐹 ⇝ (lim sup‘𝐹))
90 releldm 5899 . 2 ((Rel ⇝ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → 𝐹 ∈ dom ⇝ )
912, 89, 90syl2anc 584 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  wss 3910   class class class wbr 5105  dom cdm 5633  Rel wrel 5638  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050   + caddc 11054   < clt 11189  cle 11190  cmin 11385  -cneg 11386  cz 12499  cuz 12763  +crp 12915  abscabs 15119  lim supclsp 15352  cli 15366  lim infclsi 43982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-ioo 13268  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-ceil 13698  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-liminf 43983
This theorem is referenced by:  climliminflimsup  44039  climliminflimsup2  44040
  Copyright terms: Public domain W3C validator