Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflimsupclim Structured version   Visualization version   GIF version

Theorem liminflimsupclim 42178
Description: A sequence of real numbers converges if its inferior limit is real, and it is greater than or equal to the superior limit (in such a case, they are actually equal, see liminflelimsupuz 42156). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflimsupclim.1 (𝜑𝑀 ∈ ℤ)
liminflimsupclim.2 𝑍 = (ℤ𝑀)
liminflimsupclim.3 (𝜑𝐹:𝑍⟶ℝ)
liminflimsupclim.4 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminflimsupclim.5 (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
Assertion
Ref Expression
liminflimsupclim (𝜑𝐹 ∈ dom ⇝ )

Proof of Theorem liminflimsupclim
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 14834 . . 3 Rel ⇝
21a1i 11 . 2 (𝜑 → Rel ⇝ )
3 liminflimsupclim.3 . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
4 liminflimsupclim.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
54fvexi 6670 . . . . . . . . . 10 𝑍 ∈ V
65a1i 11 . . . . . . . . 9 (𝜑𝑍 ∈ V)
73, 6fexd 41469 . . . . . . . 8 (𝜑𝐹 ∈ V)
87limsupcld 42061 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
9 liminflimsupclim.4 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
109rexrd 10677 . . . . . . 7 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
11 liminflimsupclim.5 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
12 liminflimsupclim.1 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
133frexr 41745 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
1412, 4, 13liminflelimsupuz 42156 . . . . . . 7 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
158, 10, 11, 14xrletrid 12535 . . . . . 6 (𝜑 → (lim sup‘𝐹) = (lim inf‘𝐹))
1615, 9eqeltrd 2913 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1716recnd 10655 . . . 4 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
18 nfcv 2977 . . . . . . . . . 10 𝑘𝐹
1912adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
203adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
219adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (lim inf‘𝐹) ∈ ℝ)
22 simpr 487 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
2318, 19, 4, 20, 21, 22liminflt 42176 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥))
2421ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim inf‘𝐹) ∈ ℝ)
253ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ)
264uztrn2 12249 . . . . . . . . . . . . . . . . 17 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2726adantll 712 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2825, 27ffvelrnd 6838 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
2928adantllr 717 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
3022ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
31 rpre 12384 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3230, 31syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
3324, 29, 32ltsubadd2d 11224 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑥)))
3433bicomd 225 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
3528recnd 10655 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
3615eqcomd 2827 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))
3736, 17eqeltrd 2913 . . . . . . . . . . . . . . . . . 18 (𝜑 → (lim inf‘𝐹) ∈ ℂ)
3837ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim inf‘𝐹) ∈ ℂ)
3935, 38negsubdi2d 10999 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → -((𝐹𝑘) − (lim inf‘𝐹)) = ((lim inf‘𝐹) − (𝐹𝑘)))
4039breq1d 5062 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
4140adantllr 717 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
4241bicomd 225 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ -((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥))
4329, 24resubcld 11054 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (lim inf‘𝐹)) ∈ ℝ)
44 ltnegcon1 11127 . . . . . . . . . . . . . 14 ((((𝐹𝑘) − (lim inf‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4543, 32, 44syl2anc 586 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4642, 45bitrd 281 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4736oveq2d 7158 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑘) − (lim inf‘𝐹)) = ((𝐹𝑘) − (lim sup‘𝐹)))
4847breq2d 5064 . . . . . . . . . . . . 13 (𝜑 → (-𝑥 < ((𝐹𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
4948ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-𝑥 < ((𝐹𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5034, 46, 493bitrd 307 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5150ralbidva 3196 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5251rexbidva 3296 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5323, 52mpbid 234 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)))
5416adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (lim sup‘𝐹) ∈ ℝ)
5518, 19, 4, 20, 54, 22limsupgt 42149 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹))
5654ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim sup‘𝐹) ∈ ℝ)
57 ltsub23 11106 . . . . . . . . . . . 12 (((𝐹𝑘) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (lim sup‘𝐹) ∈ ℝ) → (((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
5829, 32, 56, 57syl3anc 1367 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
5958ralbidva 3196 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6059rexbidva 3296 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6155, 60mpbid 234 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)
6253, 61jca 514 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
634rexanuz2 14694 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6462, 63sylibr 236 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
65 simplll 773 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
66 simpllr 774 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
6726adantll 712 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
68 simpr 487 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
693ffvelrnda 6837 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
7016adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (lim sup‘𝐹) ∈ ℝ)
7169, 70resubcld 11054 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ)
7271adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ)
7331ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥 ∈ ℝ)
74 abslt 14659 . . . . . . . . . . . . 13 ((((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7572, 73, 74syl2anc 586 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7675adantr 483 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7768, 76mpbird 259 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
7877ex 415 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
7965, 66, 67, 78syl21anc 835 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8079ralimdva 3177 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8180reximdva 3274 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8264, 81mpd 15 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
8382ralrimiva 3182 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
8417, 83jca 514 . . 3 (𝜑 → ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
85 ax-resscn 10580 . . . . . 6 ℝ ⊆ ℂ
8685a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
873, 86fssd 6514 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
8818, 12, 4, 87climuz 42115 . . 3 (𝜑 → (𝐹 ⇝ (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)))
8984, 88mpbird 259 . 2 (𝜑𝐹 ⇝ (lim sup‘𝐹))
90 releldm 5800 . 2 ((Rel ⇝ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → 𝐹 ∈ dom ⇝ )
912, 89, 90syl2anc 586 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3486  wss 3924   class class class wbr 5052  dom cdm 5541  Rel wrel 5546  wf 6337  cfv 6341  (class class class)co 7142  cc 10521  cr 10522   + caddc 10526   < clt 10661  cle 10662  cmin 10856  -cneg 10857  cz 11968  cuz 12230  +crp 12376  abscabs 14578  lim supclsp 14812  cli 14826  lim infclsi 42122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8892  df-inf 8893  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-n0 11885  df-z 11969  df-uz 12231  df-q 12336  df-rp 12377  df-xneg 12494  df-xadd 12495  df-ioo 12729  df-ico 12731  df-fz 12883  df-fzo 13024  df-fl 13152  df-ceil 13153  df-seq 13360  df-exp 13420  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-limsup 14813  df-clim 14830  df-liminf 42123
This theorem is referenced by:  climliminflimsup  42179  climliminflimsup2  42180
  Copyright terms: Public domain W3C validator