| Step | Hyp | Ref
| Expression |
| 1 | | climrel 15513 |
. . 3
⊢ Rel
⇝ |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → Rel ⇝
) |
| 3 | | liminflimsupclim.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| 4 | | liminflimsupclim.2 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 5 | 4 | fvexi 6895 |
. . . . . . . . . 10
⊢ 𝑍 ∈ V |
| 6 | 5 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ V) |
| 7 | 3, 6 | fexd 7224 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ V) |
| 8 | 7 | limsupcld 45699 |
. . . . . . 7
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) |
| 9 | | liminflimsupclim.4 |
. . . . . . . 8
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℝ) |
| 10 | 9 | rexrd 11290 |
. . . . . . 7
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℝ*) |
| 11 | | liminflimsupclim.5 |
. . . . . . 7
⊢ (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) |
| 12 | | liminflimsupclim.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 13 | 3 | frexr 45392 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 14 | 12, 4, 13 | liminflelimsupuz 45794 |
. . . . . . 7
⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| 15 | 8, 10, 11, 14 | xrletrid 13176 |
. . . . . 6
⊢ (𝜑 → (lim sup‘𝐹) = (lim inf‘𝐹)) |
| 16 | 15, 9 | eqeltrd 2835 |
. . . . 5
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ) |
| 17 | 16 | recnd 11268 |
. . . 4
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℂ) |
| 18 | | nfcv 2899 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝐹 |
| 19 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℤ) |
| 20 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐹:𝑍⟶ℝ) |
| 21 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (lim
inf‘𝐹) ∈
ℝ) |
| 22 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
| 23 | 18, 19, 4, 20, 21, 22 | liminflt 45814 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥)) |
| 24 | 21 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (lim inf‘𝐹) ∈
ℝ) |
| 25 | 3 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐹:𝑍⟶ℝ) |
| 26 | 4 | uztrn2 12876 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 27 | 26 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 28 | 25, 27 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
| 29 | 28 | adantllr 719 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
| 30 | 22 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑥 ∈ ℝ+) |
| 31 | | rpre 13022 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑥 ∈ ℝ) |
| 33 | 24, 29, 32 | ltsubadd2d 11840 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥 ↔ (lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥))) |
| 34 | 33 | bicomd 223 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥) ↔ ((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥)) |
| 35 | 28 | recnd 11268 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
| 36 | 15 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 37 | 36, 17 | eqeltrd 2835 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℂ) |
| 38 | 37 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (lim inf‘𝐹) ∈
ℂ) |
| 39 | 35, 38 | negsubdi2d 11615 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → -((𝐹‘𝑘) − (lim inf‘𝐹)) = ((lim inf‘𝐹) − (𝐹‘𝑘))) |
| 40 | 39 | breq1d 5134 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (-((𝐹‘𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥)) |
| 41 | 40 | adantllr 719 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (-((𝐹‘𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥)) |
| 42 | 41 | bicomd 223 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥 ↔ -((𝐹‘𝑘) − (lim inf‘𝐹)) < 𝑥)) |
| 43 | 29, 24 | resubcld 11670 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) − (lim inf‘𝐹)) ∈ ℝ) |
| 44 | | ltnegcon1 11743 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑘) − (lim inf‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-((𝐹‘𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹‘𝑘) − (lim inf‘𝐹)))) |
| 45 | 43, 32, 44 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (-((𝐹‘𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹‘𝑘) − (lim inf‘𝐹)))) |
| 46 | 42, 45 | bitrd 279 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥 ↔ -𝑥 < ((𝐹‘𝑘) − (lim inf‘𝐹)))) |
| 47 | 36 | oveq2d 7426 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐹‘𝑘) − (lim inf‘𝐹)) = ((𝐹‘𝑘) − (lim sup‘𝐹))) |
| 48 | 47 | breq2d 5136 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (-𝑥 < ((𝐹‘𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)))) |
| 49 | 48 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (-𝑥 < ((𝐹‘𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)))) |
| 50 | 34, 46, 49 | 3bitrd 305 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥) ↔ -𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)))) |
| 51 | 50 | ralbidva 3162 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)))) |
| 52 | 51 | rexbidva 3163 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)))) |
| 53 | 23, 52 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹))) |
| 54 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (lim
sup‘𝐹) ∈
ℝ) |
| 55 | 18, 19, 4, 20, 54, 22 | limsupgt 45787 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑥) < (lim sup‘𝐹)) |
| 56 | 54 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (lim sup‘𝐹) ∈
ℝ) |
| 57 | | ltsub23 11722 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑘) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (lim sup‘𝐹) ∈ ℝ) →
(((𝐹‘𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
| 58 | 29, 32, 56, 57 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
| 59 | 58 | ralbidva 3162 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
| 60 | 59 | rexbidva 3163 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
| 61 | 55, 60 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) |
| 62 | 53, 61 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
| 63 | 4 | rexanuz2 15373 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
| 64 | 62, 63 | sylibr 234 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
| 65 | | simplll 774 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝜑) |
| 66 | | simpllr 775 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑥 ∈ ℝ+) |
| 67 | 26 | adantll 714 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 68 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) ∧ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) → (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
| 69 | 3 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| 70 | 16 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (lim sup‘𝐹) ∈ ℝ) |
| 71 | 69, 70 | resubcld 11670 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) − (lim sup‘𝐹)) ∈ ℝ) |
| 72 | 71 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) − (lim sup‘𝐹)) ∈ ℝ) |
| 73 | 31 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → 𝑥 ∈ ℝ) |
| 74 | | abslt 15338 |
. . . . . . . . . . . . 13
⊢ ((((𝐹‘𝑘) − (lim sup‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥))) |
| 75 | 72, 73, 74 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → ((abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥))) |
| 76 | 75 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) ∧ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) → ((abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥))) |
| 77 | 68, 76 | mpbird 257 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) ∧ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥) |
| 78 | 77 | ex 412 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → ((-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥)) |
| 79 | 65, 66, 67, 78 | syl21anc 837 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥)) |
| 80 | 79 | ralimdva 3153 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥)) |
| 81 | 80 | reximdva 3154 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥)) |
| 82 | 64, 81 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥) |
| 83 | 82 | ralrimiva 3133 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥) |
| 84 | 17, 83 | jca 511 |
. . 3
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥)) |
| 85 | | ax-resscn 11191 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
| 86 | 85 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 87 | 3, 86 | fssd 6728 |
. . . 4
⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
| 88 | 18, 12, 4, 87 | climuz 45753 |
. . 3
⊢ (𝜑 → (𝐹 ⇝ (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥))) |
| 89 | 84, 88 | mpbird 257 |
. 2
⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
| 90 | | releldm 5929 |
. 2
⊢ ((Rel
⇝ ∧ 𝐹 ⇝
(lim sup‘𝐹)) →
𝐹 ∈ dom ⇝
) |
| 91 | 2, 89, 90 | syl2anc 584 |
1
⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |