Step | Hyp | Ref
| Expression |
1 | | climrel 15201 |
. . 3
⊢ Rel
⇝ |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → Rel ⇝
) |
3 | | liminflimsupclim.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
4 | | liminflimsupclim.2 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
5 | 4 | fvexi 6788 |
. . . . . . . . . 10
⊢ 𝑍 ∈ V |
6 | 5 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ V) |
7 | 3, 6 | fexd 7103 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ V) |
8 | 7 | limsupcld 43231 |
. . . . . . 7
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) |
9 | | liminflimsupclim.4 |
. . . . . . . 8
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℝ) |
10 | 9 | rexrd 11025 |
. . . . . . 7
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℝ*) |
11 | | liminflimsupclim.5 |
. . . . . . 7
⊢ (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) |
12 | | liminflimsupclim.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
13 | 3 | frexr 42924 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
14 | 12, 4, 13 | liminflelimsupuz 43326 |
. . . . . . 7
⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
15 | 8, 10, 11, 14 | xrletrid 12889 |
. . . . . 6
⊢ (𝜑 → (lim sup‘𝐹) = (lim inf‘𝐹)) |
16 | 15, 9 | eqeltrd 2839 |
. . . . 5
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ) |
17 | 16 | recnd 11003 |
. . . 4
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℂ) |
18 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝐹 |
19 | 12 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℤ) |
20 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐹:𝑍⟶ℝ) |
21 | 9 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (lim
inf‘𝐹) ∈
ℝ) |
22 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
23 | 18, 19, 4, 20, 21, 22 | liminflt 43346 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥)) |
24 | 21 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (lim inf‘𝐹) ∈
ℝ) |
25 | 3 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐹:𝑍⟶ℝ) |
26 | 4 | uztrn2 12601 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
27 | 26 | adantll 711 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
28 | 25, 27 | ffvelrnd 6962 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
29 | 28 | adantllr 716 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
30 | 22 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑥 ∈ ℝ+) |
31 | | rpre 12738 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑥 ∈ ℝ) |
33 | 24, 29, 32 | ltsubadd2d 11573 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥 ↔ (lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥))) |
34 | 33 | bicomd 222 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥) ↔ ((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥)) |
35 | 28 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
36 | 15 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
37 | 36, 17 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℂ) |
38 | 37 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (lim inf‘𝐹) ∈
ℂ) |
39 | 35, 38 | negsubdi2d 11348 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → -((𝐹‘𝑘) − (lim inf‘𝐹)) = ((lim inf‘𝐹) − (𝐹‘𝑘))) |
40 | 39 | breq1d 5084 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (-((𝐹‘𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥)) |
41 | 40 | adantllr 716 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (-((𝐹‘𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥)) |
42 | 41 | bicomd 222 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥 ↔ -((𝐹‘𝑘) − (lim inf‘𝐹)) < 𝑥)) |
43 | 29, 24 | resubcld 11403 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) − (lim inf‘𝐹)) ∈ ℝ) |
44 | | ltnegcon1 11476 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑘) − (lim inf‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-((𝐹‘𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹‘𝑘) − (lim inf‘𝐹)))) |
45 | 43, 32, 44 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (-((𝐹‘𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹‘𝑘) − (lim inf‘𝐹)))) |
46 | 42, 45 | bitrd 278 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((lim inf‘𝐹) − (𝐹‘𝑘)) < 𝑥 ↔ -𝑥 < ((𝐹‘𝑘) − (lim inf‘𝐹)))) |
47 | 36 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐹‘𝑘) − (lim inf‘𝐹)) = ((𝐹‘𝑘) − (lim sup‘𝐹))) |
48 | 47 | breq2d 5086 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (-𝑥 < ((𝐹‘𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)))) |
49 | 48 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (-𝑥 < ((𝐹‘𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)))) |
50 | 34, 46, 49 | 3bitrd 305 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥) ↔ -𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)))) |
51 | 50 | ralbidva 3111 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)))) |
52 | 51 | rexbidva 3225 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)))) |
53 | 23, 52 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹))) |
54 | 16 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (lim
sup‘𝐹) ∈
ℝ) |
55 | 18, 19, 4, 20, 54, 22 | limsupgt 43319 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑥) < (lim sup‘𝐹)) |
56 | 54 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (lim sup‘𝐹) ∈
ℝ) |
57 | | ltsub23 11455 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑘) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (lim sup‘𝐹) ∈ ℝ) →
(((𝐹‘𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
58 | 29, 32, 56, 57 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
59 | 58 | ralbidva 3111 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
60 | 59 | rexbidva 3225 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
61 | 55, 60 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) |
62 | 53, 61 | jca 512 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
63 | 4 | rexanuz2 15061 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
64 | 62, 63 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
65 | | simplll 772 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝜑) |
66 | | simpllr 773 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑥 ∈ ℝ+) |
67 | 26 | adantll 711 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
68 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) ∧ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) → (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) |
69 | 3 | ffvelrnda 6961 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
70 | 16 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (lim sup‘𝐹) ∈ ℝ) |
71 | 69, 70 | resubcld 11403 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) − (lim sup‘𝐹)) ∈ ℝ) |
72 | 71 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) − (lim sup‘𝐹)) ∈ ℝ) |
73 | 31 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → 𝑥 ∈ ℝ) |
74 | | abslt 15026 |
. . . . . . . . . . . . 13
⊢ ((((𝐹‘𝑘) − (lim sup‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥))) |
75 | 72, 73, 74 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → ((abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥))) |
76 | 75 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) ∧ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) → ((abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥))) |
77 | 68, 76 | mpbird 256 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) ∧ (-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥)) → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥) |
78 | 77 | ex 413 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → ((-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥)) |
79 | 65, 66, 67, 78 | syl21anc 835 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥)) |
80 | 79 | ralimdva 3108 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥)) |
81 | 80 | reximdva 3203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(-𝑥 < ((𝐹‘𝑘) − (lim sup‘𝐹)) ∧ ((𝐹‘𝑘) − (lim sup‘𝐹)) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥)) |
82 | 64, 81 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥) |
83 | 82 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥) |
84 | 17, 83 | jca 512 |
. . 3
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥)) |
85 | | ax-resscn 10928 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
86 | 85 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ⊆
ℂ) |
87 | 3, 86 | fssd 6618 |
. . . 4
⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
88 | 18, 12, 4, 87 | climuz 43285 |
. . 3
⊢ (𝜑 → (𝐹 ⇝ (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < 𝑥))) |
89 | 84, 88 | mpbird 256 |
. 2
⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
90 | | releldm 5853 |
. 2
⊢ ((Rel
⇝ ∧ 𝐹 ⇝
(lim sup‘𝐹)) →
𝐹 ∈ dom ⇝
) |
91 | 2, 89, 90 | syl2anc 584 |
1
⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |