Step | Hyp | Ref
| Expression |
1 | | climrel 15309 |
. . 3
β’ Rel
β |
2 | 1 | a1i 11 |
. 2
β’ (π β Rel β
) |
3 | | liminflimsupclim.3 |
. . . . . . . . 9
β’ (π β πΉ:πβΆβ) |
4 | | liminflimsupclim.2 |
. . . . . . . . . . 11
β’ π =
(β€β₯βπ) |
5 | 4 | fvexi 6852 |
. . . . . . . . . 10
β’ π β V |
6 | 5 | a1i 11 |
. . . . . . . . 9
β’ (π β π β V) |
7 | 3, 6 | fexd 7172 |
. . . . . . . 8
β’ (π β πΉ β V) |
8 | 7 | limsupcld 43686 |
. . . . . . 7
β’ (π β (lim supβπΉ) β
β*) |
9 | | liminflimsupclim.4 |
. . . . . . . 8
β’ (π β (lim infβπΉ) β
β) |
10 | 9 | rexrd 11139 |
. . . . . . 7
β’ (π β (lim infβπΉ) β
β*) |
11 | | liminflimsupclim.5 |
. . . . . . 7
β’ (π β (lim supβπΉ) β€ (lim infβπΉ)) |
12 | | liminflimsupclim.1 |
. . . . . . . 8
β’ (π β π β β€) |
13 | 3 | frexr 43378 |
. . . . . . . 8
β’ (π β πΉ:πβΆβ*) |
14 | 12, 4, 13 | liminflelimsupuz 43781 |
. . . . . . 7
β’ (π β (lim infβπΉ) β€ (lim supβπΉ)) |
15 | 8, 10, 11, 14 | xrletrid 13003 |
. . . . . 6
β’ (π β (lim supβπΉ) = (lim infβπΉ)) |
16 | 15, 9 | eqeltrd 2839 |
. . . . 5
β’ (π β (lim supβπΉ) β
β) |
17 | 16 | recnd 11117 |
. . . 4
β’ (π β (lim supβπΉ) β
β) |
18 | | nfcv 2906 |
. . . . . . . . . 10
β’
β²ππΉ |
19 | 12 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ π₯ β β+) β π β
β€) |
20 | 3 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ π₯ β β+) β πΉ:πβΆβ) |
21 | 9 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ π₯ β β+) β (lim
infβπΉ) β
β) |
22 | | simpr 486 |
. . . . . . . . . 10
β’ ((π β§ π₯ β β+) β π₯ β
β+) |
23 | 18, 19, 4, 20, 21, 22 | liminflt 43801 |
. . . . . . . . 9
β’ ((π β§ π₯ β β+) β
βπ β π βπ β (β€β₯βπ)(lim infβπΉ) < ((πΉβπ) + π₯)) |
24 | 21 | ad2antrr 725 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β (lim infβπΉ) β
β) |
25 | 3 | ad2antrr 725 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β πΉ:πβΆβ) |
26 | 4 | uztrn2 12715 |
. . . . . . . . . . . . . . . . 17
β’ ((π β π β§ π β (β€β₯βπ)) β π β π) |
27 | 26 | adantll 713 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β π β π) |
28 | 25, 27 | ffvelcdmd 7031 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΉβπ) β β) |
29 | 28 | adantllr 718 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β (πΉβπ) β β) |
30 | 22 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β π₯ β β+) |
31 | | rpre 12852 |
. . . . . . . . . . . . . . 15
β’ (π₯ β β+
β π₯ β
β) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β π₯ β β) |
33 | 24, 29, 32 | ltsubadd2d 11687 |
. . . . . . . . . . . . 13
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β (((lim infβπΉ) β (πΉβπ)) < π₯ β (lim infβπΉ) < ((πΉβπ) + π₯))) |
34 | 33 | bicomd 222 |
. . . . . . . . . . . 12
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β ((lim infβπΉ) < ((πΉβπ) + π₯) β ((lim infβπΉ) β (πΉβπ)) < π₯)) |
35 | 28 | recnd 11117 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΉβπ) β β) |
36 | 15 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (lim infβπΉ) = (lim supβπΉ)) |
37 | 36, 17 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (lim infβπΉ) β
β) |
38 | 37 | ad2antrr 725 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (lim infβπΉ) β
β) |
39 | 35, 38 | negsubdi2d 11462 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β -((πΉβπ) β (lim infβπΉ)) = ((lim infβπΉ) β (πΉβπ))) |
40 | 39 | breq1d 5114 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (-((πΉβπ) β (lim infβπΉ)) < π₯ β ((lim infβπΉ) β (πΉβπ)) < π₯)) |
41 | 40 | adantllr 718 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β (-((πΉβπ) β (lim infβπΉ)) < π₯ β ((lim infβπΉ) β (πΉβπ)) < π₯)) |
42 | 41 | bicomd 222 |
. . . . . . . . . . . . 13
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β (((lim infβπΉ) β (πΉβπ)) < π₯ β -((πΉβπ) β (lim infβπΉ)) < π₯)) |
43 | 29, 24 | resubcld 11517 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β ((πΉβπ) β (lim infβπΉ)) β β) |
44 | | ltnegcon1 11590 |
. . . . . . . . . . . . . 14
β’ ((((πΉβπ) β (lim infβπΉ)) β β β§ π₯ β β) β (-((πΉβπ) β (lim infβπΉ)) < π₯ β -π₯ < ((πΉβπ) β (lim infβπΉ)))) |
45 | 43, 32, 44 | syl2anc 585 |
. . . . . . . . . . . . 13
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β (-((πΉβπ) β (lim infβπΉ)) < π₯ β -π₯ < ((πΉβπ) β (lim infβπΉ)))) |
46 | 42, 45 | bitrd 279 |
. . . . . . . . . . . 12
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β (((lim infβπΉ) β (πΉβπ)) < π₯ β -π₯ < ((πΉβπ) β (lim infβπΉ)))) |
47 | 36 | oveq2d 7366 |
. . . . . . . . . . . . . 14
β’ (π β ((πΉβπ) β (lim infβπΉ)) = ((πΉβπ) β (lim supβπΉ))) |
48 | 47 | breq2d 5116 |
. . . . . . . . . . . . 13
β’ (π β (-π₯ < ((πΉβπ) β (lim infβπΉ)) β -π₯ < ((πΉβπ) β (lim supβπΉ)))) |
49 | 48 | ad3antrrr 729 |
. . . . . . . . . . . 12
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β (-π₯ < ((πΉβπ) β (lim infβπΉ)) β -π₯ < ((πΉβπ) β (lim supβπΉ)))) |
50 | 34, 46, 49 | 3bitrd 305 |
. . . . . . . . . . 11
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β ((lim infβπΉ) < ((πΉβπ) + π₯) β -π₯ < ((πΉβπ) β (lim supβπΉ)))) |
51 | 50 | ralbidva 3171 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β π) β (βπ β (β€β₯βπ)(lim infβπΉ) < ((πΉβπ) + π₯) β βπ β (β€β₯βπ)-π₯ < ((πΉβπ) β (lim supβπΉ)))) |
52 | 51 | rexbidva 3172 |
. . . . . . . . 9
β’ ((π β§ π₯ β β+) β
(βπ β π βπ β (β€β₯βπ)(lim infβπΉ) < ((πΉβπ) + π₯) β βπ β π βπ β (β€β₯βπ)-π₯ < ((πΉβπ) β (lim supβπΉ)))) |
53 | 23, 52 | mpbid 231 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β
βπ β π βπ β (β€β₯βπ)-π₯ < ((πΉβπ) β (lim supβπΉ))) |
54 | 16 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ π₯ β β+) β (lim
supβπΉ) β
β) |
55 | 18, 19, 4, 20, 54, 22 | limsupgt 43774 |
. . . . . . . . 9
β’ ((π β§ π₯ β β+) β
βπ β π βπ β (β€β₯βπ)((πΉβπ) β π₯) < (lim supβπΉ)) |
56 | 54 | ad2antrr 725 |
. . . . . . . . . . . 12
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β (lim supβπΉ) β
β) |
57 | | ltsub23 11569 |
. . . . . . . . . . . 12
β’ (((πΉβπ) β β β§ π₯ β β β§ (lim supβπΉ) β β) β
(((πΉβπ) β π₯) < (lim supβπΉ) β ((πΉβπ) β (lim supβπΉ)) < π₯)) |
58 | 29, 32, 56, 57 | syl3anc 1372 |
. . . . . . . . . . 11
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β (((πΉβπ) β π₯) < (lim supβπΉ) β ((πΉβπ) β (lim supβπΉ)) < π₯)) |
59 | 58 | ralbidva 3171 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β π) β (βπ β (β€β₯βπ)((πΉβπ) β π₯) < (lim supβπΉ) β βπ β (β€β₯βπ)((πΉβπ) β (lim supβπΉ)) < π₯)) |
60 | 59 | rexbidva 3172 |
. . . . . . . . 9
β’ ((π β§ π₯ β β+) β
(βπ β π βπ β (β€β₯βπ)((πΉβπ) β π₯) < (lim supβπΉ) β βπ β π βπ β (β€β₯βπ)((πΉβπ) β (lim supβπΉ)) < π₯)) |
61 | 55, 60 | mpbid 231 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β
βπ β π βπ β (β€β₯βπ)((πΉβπ) β (lim supβπΉ)) < π₯) |
62 | 53, 61 | jca 513 |
. . . . . . 7
β’ ((π β§ π₯ β β+) β
(βπ β π βπ β (β€β₯βπ)-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ βπ β π βπ β (β€β₯βπ)((πΉβπ) β (lim supβπΉ)) < π₯)) |
63 | 4 | rexanuz2 15169 |
. . . . . . 7
β’
(βπ β
π βπ β
(β€β₯βπ)(-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯) β (βπ β π βπ β (β€β₯βπ)-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ βπ β π βπ β (β€β₯βπ)((πΉβπ) β (lim supβπΉ)) < π₯)) |
64 | 62, 63 | sylibr 233 |
. . . . . 6
β’ ((π β§ π₯ β β+) β
βπ β π βπ β (β€β₯βπ)(-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯)) |
65 | | simplll 774 |
. . . . . . . . 9
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β π) |
66 | | simpllr 775 |
. . . . . . . . 9
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β π₯ β β+) |
67 | 26 | adantll 713 |
. . . . . . . . 9
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β π β π) |
68 | | simpr 486 |
. . . . . . . . . . 11
β’ ((((π β§ π₯ β β+) β§ π β π) β§ (-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯)) β (-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯)) |
69 | 3 | ffvelcdmda 7030 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π) β (πΉβπ) β β) |
70 | 16 | adantr 482 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π) β (lim supβπΉ) β β) |
71 | 69, 70 | resubcld 11517 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π) β ((πΉβπ) β (lim supβπΉ)) β β) |
72 | 71 | adantlr 714 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β+) β§ π β π) β ((πΉβπ) β (lim supβπΉ)) β β) |
73 | 31 | ad2antlr 726 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β+) β§ π β π) β π₯ β β) |
74 | | abslt 15134 |
. . . . . . . . . . . . 13
β’ ((((πΉβπ) β (lim supβπΉ)) β β β§ π₯ β β) β ((absβ((πΉβπ) β (lim supβπΉ))) < π₯ β (-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯))) |
75 | 72, 73, 74 | syl2anc 585 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β+) β§ π β π) β ((absβ((πΉβπ) β (lim supβπΉ))) < π₯ β (-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯))) |
76 | 75 | adantr 482 |
. . . . . . . . . . 11
β’ ((((π β§ π₯ β β+) β§ π β π) β§ (-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯)) β ((absβ((πΉβπ) β (lim supβπΉ))) < π₯ β (-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯))) |
77 | 68, 76 | mpbird 257 |
. . . . . . . . . 10
β’ ((((π β§ π₯ β β+) β§ π β π) β§ (-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯)) β (absβ((πΉβπ) β (lim supβπΉ))) < π₯) |
78 | 77 | ex 414 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ π β π) β ((-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯) β (absβ((πΉβπ) β (lim supβπΉ))) < π₯)) |
79 | 65, 66, 67, 78 | syl21anc 837 |
. . . . . . . 8
β’ ((((π β§ π₯ β β+) β§ π β π) β§ π β (β€β₯βπ)) β ((-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯) β (absβ((πΉβπ) β (lim supβπΉ))) < π₯)) |
80 | 79 | ralimdva 3163 |
. . . . . . 7
β’ (((π β§ π₯ β β+) β§ π β π) β (βπ β (β€β₯βπ)(-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯) β βπ β (β€β₯βπ)(absβ((πΉβπ) β (lim supβπΉ))) < π₯)) |
81 | 80 | reximdva 3164 |
. . . . . 6
β’ ((π β§ π₯ β β+) β
(βπ β π βπ β (β€β₯βπ)(-π₯ < ((πΉβπ) β (lim supβπΉ)) β§ ((πΉβπ) β (lim supβπΉ)) < π₯) β βπ β π βπ β (β€β₯βπ)(absβ((πΉβπ) β (lim supβπΉ))) < π₯)) |
82 | 64, 81 | mpd 15 |
. . . . 5
β’ ((π β§ π₯ β β+) β
βπ β π βπ β (β€β₯βπ)(absβ((πΉβπ) β (lim supβπΉ))) < π₯) |
83 | 82 | ralrimiva 3142 |
. . . 4
β’ (π β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)(absβ((πΉβπ) β (lim supβπΉ))) < π₯) |
84 | 17, 83 | jca 513 |
. . 3
β’ (π β ((lim supβπΉ) β β β§
βπ₯ β
β+ βπ β π βπ β (β€β₯βπ)(absβ((πΉβπ) β (lim supβπΉ))) < π₯)) |
85 | | ax-resscn 11042 |
. . . . . 6
β’ β
β β |
86 | 85 | a1i 11 |
. . . . 5
β’ (π β β β
β) |
87 | 3, 86 | fssd 6682 |
. . . 4
β’ (π β πΉ:πβΆβ) |
88 | 18, 12, 4, 87 | climuz 43740 |
. . 3
β’ (π β (πΉ β (lim supβπΉ) β ((lim supβπΉ) β β β§ βπ₯ β β+
βπ β π βπ β (β€β₯βπ)(absβ((πΉβπ) β (lim supβπΉ))) < π₯))) |
89 | 84, 88 | mpbird 257 |
. 2
β’ (π β πΉ β (lim supβπΉ)) |
90 | | releldm 5896 |
. 2
β’ ((Rel
β β§ πΉ β
(lim supβπΉ)) β
πΉ β dom β
) |
91 | 2, 89, 90 | syl2anc 585 |
1
β’ (π β πΉ β dom β ) |