Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflimsupclim Structured version   Visualization version   GIF version

Theorem liminflimsupclim 41972
Description: A sequence of real numbers converges if its inferior limit is real, and it is greater than or equal to the superior limit (in such a case, they are actually equal, see liminflelimsupuz 41950). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflimsupclim.1 (𝜑𝑀 ∈ ℤ)
liminflimsupclim.2 𝑍 = (ℤ𝑀)
liminflimsupclim.3 (𝜑𝐹:𝑍⟶ℝ)
liminflimsupclim.4 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminflimsupclim.5 (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
Assertion
Ref Expression
liminflimsupclim (𝜑𝐹 ∈ dom ⇝ )

Proof of Theorem liminflimsupclim
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 14844 . . 3 Rel ⇝
21a1i 11 . 2 (𝜑 → Rel ⇝ )
3 liminflimsupclim.3 . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
4 liminflimsupclim.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
54fvexi 6683 . . . . . . . . . 10 𝑍 ∈ V
65a1i 11 . . . . . . . . 9 (𝜑𝑍 ∈ V)
73, 6fexd 41264 . . . . . . . 8 (𝜑𝐹 ∈ V)
87limsupcld 41855 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
9 liminflimsupclim.4 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
109rexrd 10685 . . . . . . 7 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
11 liminflimsupclim.5 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
12 liminflimsupclim.1 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
133frexr 41539 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
1412, 4, 13liminflelimsupuz 41950 . . . . . . 7 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
158, 10, 11, 14xrletrid 12543 . . . . . 6 (𝜑 → (lim sup‘𝐹) = (lim inf‘𝐹))
1615, 9eqeltrd 2918 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1716recnd 10663 . . . 4 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
18 nfcv 2982 . . . . . . . . . 10 𝑘𝐹
1912adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
203adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
219adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (lim inf‘𝐹) ∈ ℝ)
22 simpr 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
2318, 19, 4, 20, 21, 22liminflt 41970 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥))
2421ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim inf‘𝐹) ∈ ℝ)
253ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ)
264uztrn2 12256 . . . . . . . . . . . . . . . . 17 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2726adantll 710 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2825, 27ffvelrnd 6850 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
2928adantllr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
3022ad2antrr 722 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
31 rpre 12392 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3230, 31syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
3324, 29, 32ltsubadd2d 11232 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑥)))
3433bicomd 224 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
3528recnd 10663 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
3615eqcomd 2832 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))
3736, 17eqeltrd 2918 . . . . . . . . . . . . . . . . . 18 (𝜑 → (lim inf‘𝐹) ∈ ℂ)
3837ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim inf‘𝐹) ∈ ℂ)
3935, 38negsubdi2d 11007 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → -((𝐹𝑘) − (lim inf‘𝐹)) = ((lim inf‘𝐹) − (𝐹𝑘)))
4039breq1d 5073 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
4140adantllr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
4241bicomd 224 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ -((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥))
4329, 24resubcld 11062 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (lim inf‘𝐹)) ∈ ℝ)
44 ltnegcon1 11135 . . . . . . . . . . . . . 14 ((((𝐹𝑘) − (lim inf‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4543, 32, 44syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4642, 45bitrd 280 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4736oveq2d 7166 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑘) − (lim inf‘𝐹)) = ((𝐹𝑘) − (lim sup‘𝐹)))
4847breq2d 5075 . . . . . . . . . . . . 13 (𝜑 → (-𝑥 < ((𝐹𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
4948ad3antrrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-𝑥 < ((𝐹𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5034, 46, 493bitrd 306 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5150ralbidva 3201 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5251rexbidva 3301 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5323, 52mpbid 233 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)))
5416adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (lim sup‘𝐹) ∈ ℝ)
5518, 19, 4, 20, 54, 22limsupgt 41943 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹))
5654ad2antrr 722 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim sup‘𝐹) ∈ ℝ)
57 ltsub23 11114 . . . . . . . . . . . 12 (((𝐹𝑘) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (lim sup‘𝐹) ∈ ℝ) → (((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
5829, 32, 56, 57syl3anc 1365 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
5958ralbidva 3201 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6059rexbidva 3301 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6155, 60mpbid 233 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)
6253, 61jca 512 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
634rexanuz2 14704 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6462, 63sylibr 235 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
65 simplll 771 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
66 simpllr 772 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
6726adantll 710 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
68 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
693ffvelrnda 6849 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
7016adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (lim sup‘𝐹) ∈ ℝ)
7169, 70resubcld 11062 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ)
7271adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ)
7331ad2antlr 723 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥 ∈ ℝ)
74 abslt 14669 . . . . . . . . . . . . 13 ((((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7572, 73, 74syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7675adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7768, 76mpbird 258 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
7877ex 413 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
7965, 66, 67, 78syl21anc 835 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8079ralimdva 3182 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8180reximdva 3279 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8264, 81mpd 15 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
8382ralrimiva 3187 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
8417, 83jca 512 . . 3 (𝜑 → ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
85 ax-resscn 10588 . . . . . 6 ℝ ⊆ ℂ
8685a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
873, 86fssd 6527 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
8818, 12, 4, 87climuz 41909 . . 3 (𝜑 → (𝐹 ⇝ (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)))
8984, 88mpbird 258 . 2 (𝜑𝐹 ⇝ (lim sup‘𝐹))
90 releldm 5813 . 2 ((Rel ⇝ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → 𝐹 ∈ dom ⇝ )
912, 89, 90syl2anc 584 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3143  wrex 3144  Vcvv 3500  wss 3940   class class class wbr 5063  dom cdm 5554  Rel wrel 5559  wf 6350  cfv 6354  (class class class)co 7150  cc 10529  cr 10530   + caddc 10534   < clt 10669  cle 10670  cmin 10864  -cneg 10865  cz 11975  cuz 12237  +crp 12384  abscabs 14588  lim supclsp 14822  cli 14836  lim infclsi 41916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-ioo 12737  df-ico 12739  df-fz 12888  df-fzo 13029  df-fl 13157  df-ceil 13158  df-seq 13365  df-exp 13425  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-liminf 41917
This theorem is referenced by:  climliminflimsup  41973  climliminflimsup2  41974
  Copyright terms: Public domain W3C validator