Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinfdmmbllem Structured version   Visualization version   GIF version

Theorem smfinfdmmbllem 46853
Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025.)
Hypotheses
Ref Expression
smfinfdmmbllem.1 𝑛𝜑
smfinfdmmbllem.2 𝑥𝜑
smfinfdmmbllem.3 𝑚𝜑
smfinfdmmbllem.4 𝑥𝐹
smfinfdmmbllem.5 (𝜑𝑀 ∈ ℤ)
smfinfdmmbllem.6 𝑍 = (ℤ𝑀)
smfinfdmmbllem.7 (𝜑𝑆 ∈ SAlg)
smfinfdmmbllem.8 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfinfdmmbllem.9 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
smfinfdmmbllem.10 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
smfinfdmmbllem.11 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
smfinfdmmbllem.12 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
Assertion
Ref Expression
smfinfdmmbllem (𝜑 → dom 𝐺𝑆)
Distinct variable groups:   𝐷,𝑚   𝑚,𝐹,𝑦   𝑦,𝐻   𝑆,𝑚,𝑛   𝑚,𝑍,𝑥,𝑛,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑦,𝑚,𝑛)

Proof of Theorem smfinfdmmbllem
StepHypRef Expression
1 smfinfdmmbllem.1 . . 3 𝑛𝜑
2 smfinfdmmbllem.2 . . 3 𝑥𝜑
3 smfinfdmmbllem.3 . . 3 𝑚𝜑
4 smfinfdmmbllem.4 . . 3 𝑥𝐹
5 smfinfdmmbllem.7 . . . . . 6 (𝜑𝑆 ∈ SAlg)
65adantr 480 . . . . 5 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
7 smfinfdmmbllem.8 . . . . . 6 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
87ffvelcdmda 7059 . . . . 5 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
9 eqid 2730 . . . . 5 dom (𝐹𝑛) = dom (𝐹𝑛)
106, 8, 9smff 46737 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
1110frexr 45388 . . 3 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
12 smfinfdmmbllem.10 . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
13 smfinfdmmbllem.11 . . 3 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
14 smfinfdmmbllem.12 . . 3 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
151, 2, 3, 4, 11, 12, 13, 14finfdm2 46852 . 2 (𝜑 → dom 𝐺 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
16 nfcv 2892 . . 3 𝑚𝑆
17 nfcv 2892 . . 3 𝑚
18 nnct 13953 . . . 4 ℕ ≼ ω
1918a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
20 nfv 1914 . . . . 5 𝑛 𝑚 ∈ ℕ
211, 20nfan 1899 . . . 4 𝑛(𝜑𝑚 ∈ ℕ)
22 nfcv 2892 . . . 4 𝑛𝑆
23 nfcv 2892 . . . 4 𝑛𝑍
245adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ SAlg)
25 smfinfdmmbllem.6 . . . . . 6 𝑍 = (ℤ𝑀)
2625uzct 45064 . . . . 5 𝑍 ≼ ω
2726a1i 11 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑍 ≼ ω)
28 smfinfdmmbllem.5 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2928, 25uzn0d 45428 . . . . 5 (𝜑𝑍 ≠ ∅)
3029adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑍 ≠ ∅)
3124adantr 480 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑆 ∈ SAlg)
32 smfinfdmmbllem.9 . . . . . . 7 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
3332adantlr 715 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
3431, 33salrestss 46366 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝑆t dom (𝐹𝑛)) ⊆ 𝑆)
35 nfv 1914 . . . . . . . . . 10 𝑚 𝑛𝑍
363, 35nfan 1899 . . . . . . . . 9 𝑚(𝜑𝑛𝑍)
37 nfcv 2892 . . . . . . . . . . . 12 𝑥𝑛
384, 37nffv 6871 . . . . . . . . . . 11 𝑥(𝐹𝑛)
398adantlr 715 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
40 nnre 12200 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
4140renegcld 11612 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → -𝑚 ∈ ℝ)
4241rexrd 11231 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → -𝑚 ∈ ℝ*)
4342ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → -𝑚 ∈ ℝ*)
4438, 31, 39, 9, 43smfpimgtxr 46785 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)} ∈ (𝑆t dom (𝐹𝑛)))
4544an32s 652 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)} ∈ (𝑆t dom (𝐹𝑛)))
4636, 45fmptd2f 45236 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}):ℕ⟶(𝑆t dom (𝐹𝑛)))
47 simpr 484 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑛𝑍)
48 nnex 12199 . . . . . . . . . . 11 ℕ ∈ V
4948mptex 7200 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}) ∈ V
5014fvmpt2 6982 . . . . . . . . . 10 ((𝑛𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}) ∈ V) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
5147, 49, 50sylancl 586 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
5251feq1d 6673 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)) ↔ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}):ℕ⟶(𝑆t dom (𝐹𝑛))))
5346, 52mpbird 257 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)))
5453adantlr 715 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)))
55 simplr 768 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
5654, 55ffvelcdmd 7060 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) ∈ (𝑆t dom (𝐹𝑛)))
5734, 56sseldd 3950 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) ∈ 𝑆)
5821, 22, 23, 24, 27, 30, 57saliinclf 46331 . . 3 ((𝜑𝑚 ∈ ℕ) → 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∈ 𝑆)
593, 16, 17, 5, 19, 58saliunclf 46327 . 2 (𝜑 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∈ 𝑆)
6015, 59eqeltrd 2829 1 (𝜑 → dom 𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  c0 4299   ciun 4958   ciin 4959   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  wf 6510  cfv 6514  (class class class)co 7390  ωcom 7845  cdom 8919  infcinf 9399  cr 11074  *cxr 11214   < clt 11215  cle 11216  -cneg 11413  cn 12193  cz 12536  cuz 12800  t crest 17390  SAlgcsalg 46313  SMblFncsmblfn 46700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ioo 13317  df-ico 13319  df-fl 13761  df-rest 17392  df-salg 46314  df-smblfn 46701
This theorem is referenced by:  smfinfdmmbl  46854
  Copyright terms: Public domain W3C validator