Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinfdmmbllem Structured version   Visualization version   GIF version

Theorem smfinfdmmbllem 46863
Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025.)
Hypotheses
Ref Expression
smfinfdmmbllem.1 𝑛𝜑
smfinfdmmbllem.2 𝑥𝜑
smfinfdmmbllem.3 𝑚𝜑
smfinfdmmbllem.4 𝑥𝐹
smfinfdmmbllem.5 (𝜑𝑀 ∈ ℤ)
smfinfdmmbllem.6 𝑍 = (ℤ𝑀)
smfinfdmmbllem.7 (𝜑𝑆 ∈ SAlg)
smfinfdmmbllem.8 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfinfdmmbllem.9 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
smfinfdmmbllem.10 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
smfinfdmmbllem.11 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
smfinfdmmbllem.12 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
Assertion
Ref Expression
smfinfdmmbllem (𝜑 → dom 𝐺𝑆)
Distinct variable groups:   𝐷,𝑚   𝑚,𝐹,𝑦   𝑦,𝐻   𝑆,𝑚,𝑛   𝑚,𝑍,𝑥,𝑛,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑦,𝑚,𝑛)

Proof of Theorem smfinfdmmbllem
StepHypRef Expression
1 smfinfdmmbllem.1 . . 3 𝑛𝜑
2 smfinfdmmbllem.2 . . 3 𝑥𝜑
3 smfinfdmmbllem.3 . . 3 𝑚𝜑
4 smfinfdmmbllem.4 . . 3 𝑥𝐹
5 smfinfdmmbllem.7 . . . . . 6 (𝜑𝑆 ∈ SAlg)
65adantr 480 . . . . 5 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
7 smfinfdmmbllem.8 . . . . . 6 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
87ffvelcdmda 7104 . . . . 5 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
9 eqid 2737 . . . . 5 dom (𝐹𝑛) = dom (𝐹𝑛)
106, 8, 9smff 46747 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
1110frexr 45396 . . 3 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
12 smfinfdmmbllem.10 . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
13 smfinfdmmbllem.11 . . 3 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
14 smfinfdmmbllem.12 . . 3 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
151, 2, 3, 4, 11, 12, 13, 14finfdm2 46862 . 2 (𝜑 → dom 𝐺 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
16 nfcv 2905 . . 3 𝑚𝑆
17 nfcv 2905 . . 3 𝑚
18 nnct 14022 . . . 4 ℕ ≼ ω
1918a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
20 nfv 1914 . . . . 5 𝑛 𝑚 ∈ ℕ
211, 20nfan 1899 . . . 4 𝑛(𝜑𝑚 ∈ ℕ)
22 nfcv 2905 . . . 4 𝑛𝑆
23 nfcv 2905 . . . 4 𝑛𝑍
245adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ SAlg)
25 smfinfdmmbllem.6 . . . . . 6 𝑍 = (ℤ𝑀)
2625uzct 45068 . . . . 5 𝑍 ≼ ω
2726a1i 11 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑍 ≼ ω)
28 smfinfdmmbllem.5 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2928, 25uzn0d 45436 . . . . 5 (𝜑𝑍 ≠ ∅)
3029adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑍 ≠ ∅)
3124adantr 480 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑆 ∈ SAlg)
32 smfinfdmmbllem.9 . . . . . . 7 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
3332adantlr 715 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
3431, 33salrestss 46376 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝑆t dom (𝐹𝑛)) ⊆ 𝑆)
35 nfv 1914 . . . . . . . . . 10 𝑚 𝑛𝑍
363, 35nfan 1899 . . . . . . . . 9 𝑚(𝜑𝑛𝑍)
37 nfcv 2905 . . . . . . . . . . . 12 𝑥𝑛
384, 37nffv 6916 . . . . . . . . . . 11 𝑥(𝐹𝑛)
398adantlr 715 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
40 nnre 12273 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
4140renegcld 11690 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → -𝑚 ∈ ℝ)
4241rexrd 11311 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → -𝑚 ∈ ℝ*)
4342ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → -𝑚 ∈ ℝ*)
4438, 31, 39, 9, 43smfpimgtxr 46795 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)} ∈ (𝑆t dom (𝐹𝑛)))
4544an32s 652 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)} ∈ (𝑆t dom (𝐹𝑛)))
4636, 45fmptd2f 45240 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}):ℕ⟶(𝑆t dom (𝐹𝑛)))
47 simpr 484 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑛𝑍)
48 nnex 12272 . . . . . . . . . . 11 ℕ ∈ V
4948mptex 7243 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}) ∈ V
5014fvmpt2 7027 . . . . . . . . . 10 ((𝑛𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}) ∈ V) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
5147, 49, 50sylancl 586 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
5251feq1d 6720 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)) ↔ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}):ℕ⟶(𝑆t dom (𝐹𝑛))))
5346, 52mpbird 257 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)))
5453adantlr 715 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)))
55 simplr 769 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
5654, 55ffvelcdmd 7105 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) ∈ (𝑆t dom (𝐹𝑛)))
5734, 56sseldd 3984 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) ∈ 𝑆)
5821, 22, 23, 24, 27, 30, 57saliinclf 46341 . . 3 ((𝜑𝑚 ∈ ℕ) → 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∈ 𝑆)
593, 16, 17, 5, 19, 58saliunclf 46337 . 2 (𝜑 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∈ 𝑆)
6015, 59eqeltrd 2841 1 (𝜑 → dom 𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  c0 4333   ciun 4991   ciin 4992   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  ωcom 7887  cdom 8983  infcinf 9481  cr 11154  *cxr 11294   < clt 11295  cle 11296  -cneg 11493  cn 12266  cz 12613  cuz 12878  t crest 17465  SAlgcsalg 46323  SMblFncsmblfn 46710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ioo 13391  df-ico 13393  df-fl 13832  df-rest 17467  df-salg 46324  df-smblfn 46711
This theorem is referenced by:  smfinfdmmbl  46864
  Copyright terms: Public domain W3C validator