| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfinfdmmbllem | Structured version Visualization version GIF version | ||
| Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025.) |
| Ref | Expression |
|---|---|
| smfinfdmmbllem.1 | ⊢ Ⅎ𝑛𝜑 |
| smfinfdmmbllem.2 | ⊢ Ⅎ𝑥𝜑 |
| smfinfdmmbllem.3 | ⊢ Ⅎ𝑚𝜑 |
| smfinfdmmbllem.4 | ⊢ Ⅎ𝑥𝐹 |
| smfinfdmmbllem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| smfinfdmmbllem.6 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| smfinfdmmbllem.7 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfinfdmmbllem.8 | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
| smfinfdmmbllem.9 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
| smfinfdmmbllem.10 | ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} |
| smfinfdmmbllem.11 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
| smfinfdmmbllem.12 | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) |
| Ref | Expression |
|---|---|
| smfinfdmmbllem | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfinfdmmbllem.1 | . . 3 ⊢ Ⅎ𝑛𝜑 | |
| 2 | smfinfdmmbllem.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | smfinfdmmbllem.3 | . . 3 ⊢ Ⅎ𝑚𝜑 | |
| 4 | smfinfdmmbllem.4 | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 5 | smfinfdmmbllem.7 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 7 | smfinfdmmbllem.8 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
| 8 | 7 | ffvelcdmda 7017 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
| 9 | eqid 2731 | . . . . 5 ⊢ dom (𝐹‘𝑛) = dom (𝐹‘𝑛) | |
| 10 | 6, 8, 9 | smff 46769 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
| 11 | 10 | frexr 45422 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ*) |
| 12 | smfinfdmmbllem.10 | . . 3 ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} | |
| 13 | smfinfdmmbllem.11 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | |
| 14 | smfinfdmmbllem.12 | . . 3 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) | |
| 15 | 1, 2, 3, 4, 11, 12, 13, 14 | finfdm2 46884 | . 2 ⊢ (𝜑 → dom 𝐺 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚)) |
| 16 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑚𝑆 | |
| 17 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑚ℕ | |
| 18 | nnct 13885 | . . . 4 ⊢ ℕ ≼ ω | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
| 20 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑛 𝑚 ∈ ℕ | |
| 21 | 1, 20 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑚 ∈ ℕ) |
| 22 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑛𝑆 | |
| 23 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑛𝑍 | |
| 24 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑆 ∈ SAlg) |
| 25 | smfinfdmmbllem.6 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 26 | 25 | uzct 45099 | . . . . 5 ⊢ 𝑍 ≼ ω |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≼ ω) |
| 28 | smfinfdmmbllem.5 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 29 | 28, 25 | uzn0d 45462 | . . . . 5 ⊢ (𝜑 → 𝑍 ≠ ∅) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≠ ∅) |
| 31 | 24 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 32 | smfinfdmmbllem.9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) | |
| 33 | 32 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
| 34 | 31, 33 | salrestss 46398 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝑆 ↾t dom (𝐹‘𝑛)) ⊆ 𝑆) |
| 35 | nfv 1915 | . . . . . . . . . 10 ⊢ Ⅎ𝑚 𝑛 ∈ 𝑍 | |
| 36 | 3, 35 | nfan 1900 | . . . . . . . . 9 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
| 37 | nfcv 2894 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑛 | |
| 38 | 4, 37 | nffv 6832 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝐹‘𝑛) |
| 39 | 8 | adantlr 715 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
| 40 | nnre 12129 | . . . . . . . . . . . . . 14 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ) | |
| 41 | 40 | renegcld 11541 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → -𝑚 ∈ ℝ) |
| 42 | 41 | rexrd 11159 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → -𝑚 ∈ ℝ*) |
| 43 | 42 | ad2antlr 727 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → -𝑚 ∈ ℝ*) |
| 44 | 38, 31, 39, 9, 43 | smfpimgtxr 46817 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 45 | 44 | an32s 652 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 46 | 36, 45 | fmptd2f 45271 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 47 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
| 48 | nnex 12128 | . . . . . . . . . . 11 ⊢ ℕ ∈ V | |
| 49 | 48 | mptex 7157 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)}) ∈ V |
| 50 | 14 | fvmpt2 6940 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ 𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)}) ∈ V) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) |
| 51 | 47, 49, 50 | sylancl 586 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) |
| 52 | 51 | feq1d 6633 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)) ↔ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)))) |
| 53 | 46, 52 | mpbird 257 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 54 | 53 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 55 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑚 ∈ ℕ) | |
| 56 | 54, 55 | ffvelcdmd 7018 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 57 | 34, 56 | sseldd 3935 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 58 | 21, 22, 23, 24, 27, 30, 57 | saliinclf 46363 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 59 | 3, 16, 17, 5, 19, 58 | saliunclf 46359 | . 2 ⊢ (𝜑 → ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 60 | 15, 59 | eqeltrd 2831 | 1 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 Vcvv 3436 ∅c0 4283 ∪ ciun 4941 ∩ ciin 4942 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ran crn 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ωcom 7796 ≼ cdom 8867 infcinf 9325 ℝcr 11002 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 -cneg 11342 ℕcn 12122 ℤcz 12465 ℤ≥cuz 12729 ↾t crest 17321 SAlgcsalg 46345 SMblFncsmblfn 46732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10323 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-acn 9832 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-ioo 13246 df-ico 13248 df-fl 13693 df-rest 17323 df-salg 46346 df-smblfn 46733 |
| This theorem is referenced by: smfinfdmmbl 46886 |
| Copyright terms: Public domain | W3C validator |