![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfinfdmmbllem | Structured version Visualization version GIF version |
Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025.) |
Ref | Expression |
---|---|
smfinfdmmbllem.1 | ⊢ Ⅎ𝑛𝜑 |
smfinfdmmbllem.2 | ⊢ Ⅎ𝑥𝜑 |
smfinfdmmbllem.3 | ⊢ Ⅎ𝑚𝜑 |
smfinfdmmbllem.4 | ⊢ Ⅎ𝑥𝐹 |
smfinfdmmbllem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
smfinfdmmbllem.6 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
smfinfdmmbllem.7 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfinfdmmbllem.8 | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
smfinfdmmbllem.9 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
smfinfdmmbllem.10 | ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} |
smfinfdmmbllem.11 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
smfinfdmmbllem.12 | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) |
Ref | Expression |
---|---|
smfinfdmmbllem | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfinfdmmbllem.1 | . . 3 ⊢ Ⅎ𝑛𝜑 | |
2 | smfinfdmmbllem.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | smfinfdmmbllem.3 | . . 3 ⊢ Ⅎ𝑚𝜑 | |
4 | smfinfdmmbllem.4 | . . 3 ⊢ Ⅎ𝑥𝐹 | |
5 | smfinfdmmbllem.7 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | 5 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
7 | smfinfdmmbllem.8 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
8 | 7 | ffvelcdmda 7090 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
9 | eqid 2726 | . . . . 5 ⊢ dom (𝐹‘𝑛) = dom (𝐹‘𝑛) | |
10 | 6, 8, 9 | smff 46389 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
11 | 10 | frexr 45036 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ*) |
12 | smfinfdmmbllem.10 | . . 3 ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} | |
13 | smfinfdmmbllem.11 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | |
14 | smfinfdmmbllem.12 | . . 3 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) | |
15 | 1, 2, 3, 4, 11, 12, 13, 14 | finfdm2 46504 | . 2 ⊢ (𝜑 → dom 𝐺 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚)) |
16 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑚𝑆 | |
17 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑚ℕ | |
18 | nnct 13995 | . . . 4 ⊢ ℕ ≼ ω | |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
20 | nfv 1910 | . . . . 5 ⊢ Ⅎ𝑛 𝑚 ∈ ℕ | |
21 | 1, 20 | nfan 1895 | . . . 4 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑚 ∈ ℕ) |
22 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑛𝑆 | |
23 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑛𝑍 | |
24 | 5 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑆 ∈ SAlg) |
25 | smfinfdmmbllem.6 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
26 | 25 | uzct 44701 | . . . . 5 ⊢ 𝑍 ≼ ω |
27 | 26 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≼ ω) |
28 | smfinfdmmbllem.5 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
29 | 28, 25 | uzn0d 45076 | . . . . 5 ⊢ (𝜑 → 𝑍 ≠ ∅) |
30 | 29 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≠ ∅) |
31 | 24 | adantr 479 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
32 | smfinfdmmbllem.9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) | |
33 | 32 | adantlr 713 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
34 | 31, 33 | salrestss 46018 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝑆 ↾t dom (𝐹‘𝑛)) ⊆ 𝑆) |
35 | nfv 1910 | . . . . . . . . . 10 ⊢ Ⅎ𝑚 𝑛 ∈ 𝑍 | |
36 | 3, 35 | nfan 1895 | . . . . . . . . 9 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
37 | nfcv 2892 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑛 | |
38 | 4, 37 | nffv 6903 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝐹‘𝑛) |
39 | 8 | adantlr 713 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
40 | nnre 12265 | . . . . . . . . . . . . . 14 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ) | |
41 | 40 | renegcld 11682 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → -𝑚 ∈ ℝ) |
42 | 41 | rexrd 11305 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → -𝑚 ∈ ℝ*) |
43 | 42 | ad2antlr 725 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → -𝑚 ∈ ℝ*) |
44 | 38, 31, 39, 9, 43 | smfpimgtxr 46437 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
45 | 44 | an32s 650 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
46 | 36, 45 | fmptd2f 44878 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
47 | simpr 483 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
48 | nnex 12264 | . . . . . . . . . . 11 ⊢ ℕ ∈ V | |
49 | 48 | mptex 7232 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)}) ∈ V |
50 | 14 | fvmpt2 7012 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ 𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)}) ∈ V) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) |
51 | 47, 49, 50 | sylancl 584 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) |
52 | 51 | feq1d 6705 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)) ↔ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)))) |
53 | 46, 52 | mpbird 256 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
54 | 53 | adantlr 713 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
55 | simplr 767 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑚 ∈ ℕ) | |
56 | 54, 55 | ffvelcdmd 7091 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
57 | 34, 56 | sseldd 3979 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
58 | 21, 22, 23, 24, 27, 30, 57 | saliinclf 45983 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
59 | 3, 16, 17, 5, 19, 58 | saliunclf 45979 | . 2 ⊢ (𝜑 → ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
60 | 15, 59 | eqeltrd 2826 | 1 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2876 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 {crab 3419 Vcvv 3462 ∅c0 4322 ∪ ciun 4993 ∩ ciin 4994 class class class wbr 5145 ↦ cmpt 5228 dom cdm 5674 ran crn 5675 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 ωcom 7868 ≼ cdom 8964 infcinf 9477 ℝcr 11148 ℝ*cxr 11288 < clt 11289 ≤ cle 11290 -cneg 11486 ℕcn 12258 ℤcz 12604 ℤ≥cuz 12868 ↾t crest 17430 SAlgcsalg 45965 SMblFncsmblfn 46352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-cc 10469 ax-ac2 10497 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8726 df-map 8849 df-pm 8850 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9478 df-inf 9479 df-oi 9546 df-card 9975 df-acn 9978 df-ac 10152 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 df-q 12979 df-rp 13023 df-ioo 13376 df-ico 13378 df-fl 13806 df-rest 17432 df-salg 45966 df-smblfn 46353 |
This theorem is referenced by: smfinfdmmbl 46506 |
Copyright terms: Public domain | W3C validator |