Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfle Structured version   Visualization version   GIF version

Theorem issmfle 46870
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfle.s (𝜑𝑆 ∈ SAlg)
issmfle.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmfle (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmfle
Dummy variables 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmfle.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg)
3 simpr 484 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
4 issmfle.d . . . . . 6 𝐷 = dom 𝐹
52, 3, 4smfdmss 46858 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
62, 3, 4smff 46857 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
7 nfv 1915 . . . . . . 7 𝑏𝜑
8 nfv 1915 . . . . . . 7 𝑏 𝐹 ∈ (SMblFn‘𝑆)
97, 8nfan 1900 . . . . . 6 𝑏(𝜑𝐹 ∈ (SMblFn‘𝑆))
10 nfv 1915 . . . . . . . . . 10 𝑦𝜑
11 nfv 1915 . . . . . . . . . 10 𝑦 𝐹 ∈ (SMblFn‘𝑆)
1210, 11nfan 1900 . . . . . . . . 9 𝑦(𝜑𝐹 ∈ (SMblFn‘𝑆))
13 nfv 1915 . . . . . . . . 9 𝑦 𝑏 ∈ ℝ
1412, 13nfan 1900 . . . . . . . 8 𝑦((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
15 nfv 1915 . . . . . . . 8 𝑐((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
161uniexd 7683 . . . . . . . . . . . . 13 (𝜑 𝑆 ∈ V)
1716adantr 480 . . . . . . . . . . . 12 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
18 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1917, 18ssexd 5266 . . . . . . . . . . 11 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
205, 19syldan 591 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V)
21 eqid 2733 . . . . . . . . . 10 (𝑆t 𝐷) = (𝑆t 𝐷)
222, 20, 21subsalsal 46484 . . . . . . . . 9 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) ∈ SAlg)
2322adantr 480 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
246frexr 45510 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ*)
2524adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝐹:𝐷⟶ℝ*)
2625ffvelcdmda 7025 . . . . . . . 8 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ*)
272adantr 480 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑆 ∈ SAlg)
283adantr 480 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
29 simpr 484 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
3027, 28, 4, 29smfpreimalt 46856 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) < 𝑐} ∈ (𝑆t 𝐷))
3130adantlr 715 . . . . . . . 8 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) < 𝑐} ∈ (𝑆t 𝐷))
32 simpr 484 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3314, 15, 23, 26, 31, 32salpreimaltle 46851 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
3433ex 412 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑏 ∈ ℝ → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
359, 34ralrimi 3231 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
365, 6, 353jca 1128 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
3736ex 412 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))))
38 nfv 1915 . . . . . . 7 𝑦 𝐷 𝑆
39 nfv 1915 . . . . . . 7 𝑦 𝐹:𝐷⟶ℝ
40 nfcv 2895 . . . . . . . 8 𝑦
41 nfrab1 3416 . . . . . . . . 9 𝑦{𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏}
42 nfcv 2895 . . . . . . . . 9 𝑦(𝑆t 𝐷)
4341, 42nfel 2910 . . . . . . . 8 𝑦{𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)
4440, 43nfralw 3280 . . . . . . 7 𝑦𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)
4538, 39, 44nf3an 1902 . . . . . 6 𝑦(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
4610, 45nfan 1900 . . . . 5 𝑦(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
47 nfv 1915 . . . . . . 7 𝑏 𝐷 𝑆
48 nfv 1915 . . . . . . 7 𝑏 𝐹:𝐷⟶ℝ
49 nfra1 3257 . . . . . . 7 𝑏𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)
5047, 48, 49nf3an 1902 . . . . . 6 𝑏(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
517, 50nfan 1900 . . . . 5 𝑏(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
521adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝑆 ∈ SAlg)
53 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝐷 𝑆)
54 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝐹:𝐷⟶ℝ)
55 rspa 3222 . . . . . . 7 ((∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
56553ad2antl3 1188 . . . . . 6 (((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
5756adantll 714 . . . . 5 (((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
5846, 51, 52, 4, 53, 54, 57issmflelem 46869 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
5958ex 412 . . 3 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
6037, 59impbid 212 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))))
61 breq2 5099 . . . . . . . 8 (𝑏 = 𝑎 → ((𝐹𝑦) ≤ 𝑏 ↔ (𝐹𝑦) ≤ 𝑎))
6261rabbidv 3403 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} = {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑎})
63 fveq2 6830 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
6463breq1d 5105 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑦) ≤ 𝑎 ↔ (𝐹𝑥) ≤ 𝑎))
6564cbvrabv 3406 . . . . . . . 8 {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎}
6665a1i 11 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
6762, 66eqtrd 2768 . . . . . 6 (𝑏 = 𝑎 → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
6867eleq1d 2818 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷)))
6968cbvralvw 3211 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
70693anbi3i 1159 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷)))
7170a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))))
7260, 71bitrd 279 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437  wss 3898   cuni 4860   class class class wbr 5095  dom cdm 5621  wf 6484  cfv 6488  (class class class)co 7354  cr 11014  *cxr 11154   < clt 11155  cle 11156  t crest 17328  SAlgcsalg 46433  SMblFncsmblfn 46820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cc 10335  ax-ac2 10363  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-card 9841  df-acn 9844  df-ac 10016  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-q 12851  df-rp 12895  df-ioo 13253  df-ico 13255  df-fl 13700  df-rest 17330  df-salg 46434  df-smblfn 46821
This theorem is referenced by:  smfpreimale  46879  issmfgt  46881  issmfled  46882
  Copyright terms: Public domain W3C validator