Step | Hyp | Ref
| Expression |
1 | | issmfle.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ SAlg) |
2 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg) |
3 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆)) |
4 | | issmfle.d |
. . . . . 6
⊢ 𝐷 = dom 𝐹 |
5 | 2, 3, 4 | smfdmss 44156 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ⊆ ∪ 𝑆) |
6 | 2, 3, 4 | smff 44155 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ) |
7 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑏𝜑 |
8 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑏 𝐹 ∈ (SMblFn‘𝑆) |
9 | 7, 8 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑏(𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) |
10 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝜑 |
11 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑦 𝐹 ∈ (SMblFn‘𝑆) |
12 | 10, 11 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) |
13 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑏 ∈ ℝ |
14 | 12, 13 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑦((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) |
15 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑐((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) |
16 | 1 | uniexd 7573 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ 𝑆
∈ V) |
17 | 16 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → ∪ 𝑆
∈ V) |
18 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ⊆ ∪ 𝑆) |
19 | 17, 18 | ssexd 5243 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐷 ⊆ ∪ 𝑆) → 𝐷 ∈ V) |
20 | 5, 19 | syldan 590 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V) |
21 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) |
22 | 2, 20, 21 | subsalsal 43788 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → (𝑆 ↾t 𝐷) ∈ SAlg) |
23 | 22 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆 ↾t 𝐷) ∈ SAlg) |
24 | 6 | frexr 42814 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ*) |
25 | 24 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝐹:𝐷⟶ℝ*) |
26 | 25 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) ∈
ℝ*) |
27 | 2 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑆 ∈ SAlg) |
28 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
29 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ) |
30 | 27, 28, 4, 29 | smfpreimalt 44154 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑐} ∈ (𝑆 ↾t 𝐷)) |
31 | 30 | adantlr 711 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑐} ∈ (𝑆 ↾t 𝐷)) |
32 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ) |
33 | 14, 15, 23, 26, 31, 32 | salpreimaltle 44149 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)) |
34 | 33 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → (𝑏 ∈ ℝ → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷))) |
35 | 9, 34 | ralrimi 3139 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)) |
36 | 5, 6, 35 | 3jca 1126 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷))) |
37 | 36 | ex 412 |
. . 3
⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)))) |
38 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑦 𝐷 ⊆ ∪ 𝑆 |
39 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑦 𝐹:𝐷⟶ℝ |
40 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑦ℝ |
41 | | nfrab1 3310 |
. . . . . . . . 9
⊢
Ⅎ𝑦{𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} |
42 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝑆 ↾t 𝐷) |
43 | 41, 42 | nfel 2920 |
. . . . . . . 8
⊢
Ⅎ𝑦{𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷) |
44 | 40, 43 | nfralw 3149 |
. . . . . . 7
⊢
Ⅎ𝑦∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷) |
45 | 38, 39, 44 | nf3an 1905 |
. . . . . 6
⊢
Ⅎ𝑦(𝐷 ⊆ ∪ 𝑆
∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)) |
46 | 10, 45 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑦(𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷))) |
47 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑏 𝐷 ⊆ ∪ 𝑆 |
48 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑏 𝐹:𝐷⟶ℝ |
49 | | nfra1 3142 |
. . . . . . 7
⊢
Ⅎ𝑏∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷) |
50 | 47, 48, 49 | nf3an 1905 |
. . . . . 6
⊢
Ⅎ𝑏(𝐷 ⊆ ∪ 𝑆
∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)) |
51 | 7, 50 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑏(𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷))) |
52 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷))) → 𝑆 ∈ SAlg) |
53 | | simpr1 1192 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷))) → 𝐷 ⊆ ∪ 𝑆) |
54 | | simpr2 1193 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷))) → 𝐹:𝐷⟶ℝ) |
55 | | rspa 3130 |
. . . . . . 7
⊢
((∀𝑏 ∈
ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷) ∧ 𝑏 ∈ ℝ) → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)) |
56 | 55 | 3ad2antl3 1185 |
. . . . . 6
⊢ (((𝐷 ⊆ ∪ 𝑆
∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)) ∧ 𝑏 ∈ ℝ) → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)) |
57 | 56 | adantll 710 |
. . . . 5
⊢ (((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷))) ∧ 𝑏 ∈ ℝ) → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)) |
58 | 46, 51, 52, 4, 53, 54, 57 | issmflelem 44167 |
. . . 4
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆)) |
59 | 58 | ex 412 |
. . 3
⊢ (𝜑 → ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆))) |
60 | 37, 59 | impbid 211 |
. 2
⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)))) |
61 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑏 = 𝑎 → ((𝐹‘𝑦) ≤ 𝑏 ↔ (𝐹‘𝑦) ≤ 𝑎)) |
62 | 61 | rabbidv 3404 |
. . . . . . 7
⊢ (𝑏 = 𝑎 → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} = {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑎}) |
63 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
64 | 63 | breq1d 5080 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) ≤ 𝑎 ↔ (𝐹‘𝑥) ≤ 𝑎)) |
65 | 64 | cbvrabv 3416 |
. . . . . . . 8
⊢ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} |
66 | 65 | a1i 11 |
. . . . . . 7
⊢ (𝑏 = 𝑎 → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎}) |
67 | 62, 66 | eqtrd 2778 |
. . . . . 6
⊢ (𝑏 = 𝑎 → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎}) |
68 | 67 | eleq1d 2823 |
. . . . 5
⊢ (𝑏 = 𝑎 → ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷))) |
69 | 68 | cbvralvw 3372 |
. . . 4
⊢
(∀𝑏 ∈
ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) |
70 | 69 | 3anbi3i 1157 |
. . 3
⊢ ((𝐷 ⊆ ∪ 𝑆
∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷))) |
71 | 70 | a1i 11 |
. 2
⊢ (𝜑 → ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) ≤ 𝑏} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
72 | 60, 71 | bitrd 278 |
1
⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)))) |