Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfle Structured version   Visualization version   GIF version

Theorem issmfle 46701
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfle.s (𝜑𝑆 ∈ SAlg)
issmfle.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmfle (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmfle
Dummy variables 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmfle.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg)
3 simpr 484 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
4 issmfle.d . . . . . 6 𝐷 = dom 𝐹
52, 3, 4smfdmss 46689 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
62, 3, 4smff 46688 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
7 nfv 1912 . . . . . . 7 𝑏𝜑
8 nfv 1912 . . . . . . 7 𝑏 𝐹 ∈ (SMblFn‘𝑆)
97, 8nfan 1897 . . . . . 6 𝑏(𝜑𝐹 ∈ (SMblFn‘𝑆))
10 nfv 1912 . . . . . . . . . 10 𝑦𝜑
11 nfv 1912 . . . . . . . . . 10 𝑦 𝐹 ∈ (SMblFn‘𝑆)
1210, 11nfan 1897 . . . . . . . . 9 𝑦(𝜑𝐹 ∈ (SMblFn‘𝑆))
13 nfv 1912 . . . . . . . . 9 𝑦 𝑏 ∈ ℝ
1412, 13nfan 1897 . . . . . . . 8 𝑦((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
15 nfv 1912 . . . . . . . 8 𝑐((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
161uniexd 7761 . . . . . . . . . . . . 13 (𝜑 𝑆 ∈ V)
1716adantr 480 . . . . . . . . . . . 12 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
18 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1917, 18ssexd 5330 . . . . . . . . . . 11 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
205, 19syldan 591 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V)
21 eqid 2735 . . . . . . . . . 10 (𝑆t 𝐷) = (𝑆t 𝐷)
222, 20, 21subsalsal 46315 . . . . . . . . 9 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) ∈ SAlg)
2322adantr 480 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
246frexr 45335 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ*)
2524adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝐹:𝐷⟶ℝ*)
2625ffvelcdmda 7104 . . . . . . . 8 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ*)
272adantr 480 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑆 ∈ SAlg)
283adantr 480 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
29 simpr 484 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
3027, 28, 4, 29smfpreimalt 46687 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) < 𝑐} ∈ (𝑆t 𝐷))
3130adantlr 715 . . . . . . . 8 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) < 𝑐} ∈ (𝑆t 𝐷))
32 simpr 484 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3314, 15, 23, 26, 31, 32salpreimaltle 46682 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
3433ex 412 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑏 ∈ ℝ → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
359, 34ralrimi 3255 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
365, 6, 353jca 1127 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
3736ex 412 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))))
38 nfv 1912 . . . . . . 7 𝑦 𝐷 𝑆
39 nfv 1912 . . . . . . 7 𝑦 𝐹:𝐷⟶ℝ
40 nfcv 2903 . . . . . . . 8 𝑦
41 nfrab1 3454 . . . . . . . . 9 𝑦{𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏}
42 nfcv 2903 . . . . . . . . 9 𝑦(𝑆t 𝐷)
4341, 42nfel 2918 . . . . . . . 8 𝑦{𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)
4440, 43nfralw 3309 . . . . . . 7 𝑦𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)
4538, 39, 44nf3an 1899 . . . . . 6 𝑦(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
4610, 45nfan 1897 . . . . 5 𝑦(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
47 nfv 1912 . . . . . . 7 𝑏 𝐷 𝑆
48 nfv 1912 . . . . . . 7 𝑏 𝐹:𝐷⟶ℝ
49 nfra1 3282 . . . . . . 7 𝑏𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)
5047, 48, 49nf3an 1899 . . . . . 6 𝑏(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
517, 50nfan 1897 . . . . 5 𝑏(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
521adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝑆 ∈ SAlg)
53 simpr1 1193 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝐷 𝑆)
54 simpr2 1194 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝐹:𝐷⟶ℝ)
55 rspa 3246 . . . . . . 7 ((∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
56553ad2antl3 1186 . . . . . 6 (((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
5756adantll 714 . . . . 5 (((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
5846, 51, 52, 4, 53, 54, 57issmflelem 46700 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
5958ex 412 . . 3 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
6037, 59impbid 212 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))))
61 breq2 5152 . . . . . . . 8 (𝑏 = 𝑎 → ((𝐹𝑦) ≤ 𝑏 ↔ (𝐹𝑦) ≤ 𝑎))
6261rabbidv 3441 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} = {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑎})
63 fveq2 6907 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
6463breq1d 5158 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑦) ≤ 𝑎 ↔ (𝐹𝑥) ≤ 𝑎))
6564cbvrabv 3444 . . . . . . . 8 {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎}
6665a1i 11 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
6762, 66eqtrd 2775 . . . . . 6 (𝑏 = 𝑎 → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
6867eleq1d 2824 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷)))
6968cbvralvw 3235 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
70693anbi3i 1158 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷)))
7170a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))))
7260, 71bitrd 279 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  wss 3963   cuni 4912   class class class wbr 5148  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  *cxr 11292   < clt 11293  cle 11294  t crest 17467  SAlgcsalg 46264  SMblFncsmblfn 46651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-ioo 13388  df-ico 13390  df-fl 13829  df-rest 17469  df-salg 46265  df-smblfn 46652
This theorem is referenced by:  smfpreimale  46710  issmfgt  46712  issmfled  46713
  Copyright terms: Public domain W3C validator