Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfle Structured version   Visualization version   GIF version

Theorem issmfle 46732
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfle.s (𝜑𝑆 ∈ SAlg)
issmfle.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmfle (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmfle
Dummy variables 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmfle.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg)
3 simpr 484 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
4 issmfle.d . . . . . 6 𝐷 = dom 𝐹
52, 3, 4smfdmss 46720 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
62, 3, 4smff 46719 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
7 nfv 1913 . . . . . . 7 𝑏𝜑
8 nfv 1913 . . . . . . 7 𝑏 𝐹 ∈ (SMblFn‘𝑆)
97, 8nfan 1898 . . . . . 6 𝑏(𝜑𝐹 ∈ (SMblFn‘𝑆))
10 nfv 1913 . . . . . . . . . 10 𝑦𝜑
11 nfv 1913 . . . . . . . . . 10 𝑦 𝐹 ∈ (SMblFn‘𝑆)
1210, 11nfan 1898 . . . . . . . . 9 𝑦(𝜑𝐹 ∈ (SMblFn‘𝑆))
13 nfv 1913 . . . . . . . . 9 𝑦 𝑏 ∈ ℝ
1412, 13nfan 1898 . . . . . . . 8 𝑦((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
15 nfv 1913 . . . . . . . 8 𝑐((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
161uniexd 7744 . . . . . . . . . . . . 13 (𝜑 𝑆 ∈ V)
1716adantr 480 . . . . . . . . . . . 12 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
18 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1917, 18ssexd 5304 . . . . . . . . . . 11 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
205, 19syldan 591 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V)
21 eqid 2734 . . . . . . . . . 10 (𝑆t 𝐷) = (𝑆t 𝐷)
222, 20, 21subsalsal 46346 . . . . . . . . 9 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) ∈ SAlg)
2322adantr 480 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
246frexr 45368 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ*)
2524adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝐹:𝐷⟶ℝ*)
2625ffvelcdmda 7084 . . . . . . . 8 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ*)
272adantr 480 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑆 ∈ SAlg)
283adantr 480 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
29 simpr 484 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
3027, 28, 4, 29smfpreimalt 46718 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) < 𝑐} ∈ (𝑆t 𝐷))
3130adantlr 715 . . . . . . . 8 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) < 𝑐} ∈ (𝑆t 𝐷))
32 simpr 484 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3314, 15, 23, 26, 31, 32salpreimaltle 46713 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
3433ex 412 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑏 ∈ ℝ → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
359, 34ralrimi 3243 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
365, 6, 353jca 1128 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
3736ex 412 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))))
38 nfv 1913 . . . . . . 7 𝑦 𝐷 𝑆
39 nfv 1913 . . . . . . 7 𝑦 𝐹:𝐷⟶ℝ
40 nfcv 2897 . . . . . . . 8 𝑦
41 nfrab1 3440 . . . . . . . . 9 𝑦{𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏}
42 nfcv 2897 . . . . . . . . 9 𝑦(𝑆t 𝐷)
4341, 42nfel 2912 . . . . . . . 8 𝑦{𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)
4440, 43nfralw 3294 . . . . . . 7 𝑦𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)
4538, 39, 44nf3an 1900 . . . . . 6 𝑦(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
4610, 45nfan 1898 . . . . 5 𝑦(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
47 nfv 1913 . . . . . . 7 𝑏 𝐷 𝑆
48 nfv 1913 . . . . . . 7 𝑏 𝐹:𝐷⟶ℝ
49 nfra1 3269 . . . . . . 7 𝑏𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)
5047, 48, 49nf3an 1900 . . . . . 6 𝑏(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
517, 50nfan 1898 . . . . 5 𝑏(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)))
521adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝑆 ∈ SAlg)
53 simpr1 1194 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝐷 𝑆)
54 simpr2 1195 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝐹:𝐷⟶ℝ)
55 rspa 3234 . . . . . . 7 ((∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
56553ad2antl3 1187 . . . . . 6 (((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
5756adantll 714 . . . . 5 (((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))
5846, 51, 52, 4, 53, 54, 57issmflelem 46731 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
5958ex 412 . . 3 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
6037, 59impbid 212 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷))))
61 breq2 5127 . . . . . . . 8 (𝑏 = 𝑎 → ((𝐹𝑦) ≤ 𝑏 ↔ (𝐹𝑦) ≤ 𝑎))
6261rabbidv 3427 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} = {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑎})
63 fveq2 6886 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
6463breq1d 5133 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑦) ≤ 𝑎 ↔ (𝐹𝑥) ≤ 𝑎))
6564cbvrabv 3430 . . . . . . . 8 {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎}
6665a1i 11 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
6762, 66eqtrd 2769 . . . . . 6 (𝑏 = 𝑎 → {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
6867eleq1d 2818 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷)))
6968cbvralvw 3223 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
70693anbi3i 1159 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷)))
7170a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑏} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))))
7260, 71bitrd 279 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  {crab 3419  Vcvv 3463  wss 3931   cuni 4887   class class class wbr 5123  dom cdm 5665  wf 6537  cfv 6541  (class class class)co 7413  cr 11136  *cxr 11276   < clt 11277  cle 11278  t crest 17437  SAlgcsalg 46295  SMblFncsmblfn 46682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cc 10457  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-card 9961  df-acn 9964  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017  df-ioo 13373  df-ico 13375  df-fl 13814  df-rest 17439  df-salg 46296  df-smblfn 46683
This theorem is referenced by:  smfpreimale  46741  issmfgt  46743  issmfled  46744
  Copyright terms: Public domain W3C validator