![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminflimsup3 | Structured version Visualization version GIF version |
Description: A sequence of real numbers converges if and only if its inferior limit is real and equal to its superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
climliminflimsup3.1 | β’ (π β π β β€) |
climliminflimsup3.2 | β’ π = (β€β₯βπ) |
climliminflimsup3.3 | β’ (π β πΉ:πβΆβ) |
Ref | Expression |
---|---|
climliminflimsup3 | β’ (π β (πΉ β dom β β ((lim infβπΉ) β β β§ (lim infβπΉ) = (lim supβπΉ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climliminflimsup3.1 | . . 3 β’ (π β π β β€) | |
2 | climliminflimsup3.2 | . . 3 β’ π = (β€β₯βπ) | |
3 | climliminflimsup3.3 | . . 3 β’ (π β πΉ:πβΆβ) | |
4 | 1, 2, 3 | climliminflimsup 45119 | . 2 β’ (π β (πΉ β dom β β ((lim infβπΉ) β β β§ (lim supβπΉ) β€ (lim infβπΉ)))) |
5 | 3 | frexr 44690 | . . . 4 β’ (π β πΉ:πβΆβ*) |
6 | 1, 2, 5 | liminfgelimsupuz 45099 | . . 3 β’ (π β ((lim supβπΉ) β€ (lim infβπΉ) β (lim infβπΉ) = (lim supβπΉ))) |
7 | 6 | anbi2d 628 | . 2 β’ (π β (((lim infβπΉ) β β β§ (lim supβπΉ) β€ (lim infβπΉ)) β ((lim infβπΉ) β β β§ (lim infβπΉ) = (lim supβπΉ)))) |
8 | 4, 7 | bitrd 279 | 1 β’ (π β (πΉ β dom β β ((lim infβπΉ) β β β§ (lim infβπΉ) = (lim supβπΉ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 class class class wbr 5142 dom cdm 5672 βΆwf 6538 βcfv 6542 βcr 11129 β€ cle 11271 β€cz 12580 β€β₯cuz 12844 lim supclsp 15438 β cli 15452 lim infclsi 45062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-ioo 13352 df-ico 13354 df-fz 13509 df-fzo 13652 df-fl 13781 df-ceil 13782 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-limsup 15439 df-clim 15456 df-rlim 15457 df-liminf 45063 |
This theorem is referenced by: xlimliminflimsup 45173 |
Copyright terms: Public domain | W3C validator |