Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decsmf Structured version   Visualization version   GIF version

Theorem decsmf 46879
Description: A real-valued, nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
decsmf.x 𝑥𝜑
decsmf.y 𝑦𝜑
decsmf.a (𝜑𝐴 ⊆ ℝ)
decsmf.f (𝜑𝐹:𝐴⟶ℝ)
decsmf.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
decsmf.j 𝐽 = (topGen‘ran (,))
decsmf.b 𝐵 = (SalGen‘𝐽)
Assertion
Ref Expression
decsmf (𝜑𝐹 ∈ (SMblFn‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem decsmf
Dummy variables 𝑏 𝑤 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑎𝜑
2 decsmf.j . . . . 5 𝐽 = (topGen‘ran (,))
3 retop 24686 . . . . 5 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2829 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 decsmf.b . . 3 𝐵 = (SalGen‘𝐽)
75, 6salgencld 46461 . 2 (𝜑𝐵 ∈ SAlg)
8 decsmf.a . . 3 (𝜑𝐴 ⊆ ℝ)
95, 6unisalgen2 46466 . . . 4 (𝜑 𝐵 = 𝐽)
102unieqi 4872 . . . . 5 𝐽 = (topGen‘ran (,))
1110a1i 11 . . . 4 (𝜑 𝐽 = (topGen‘ran (,)))
12 uniretop 24687 . . . . . 6 ℝ = (topGen‘ran (,))
1312eqcomi 2742 . . . . 5 (topGen‘ran (,)) = ℝ
1413a1i 11 . . . 4 (𝜑 (topGen‘ran (,)) = ℝ)
159, 11, 143eqtrrd 2773 . . 3 (𝜑 → ℝ = 𝐵)
168, 15sseqtrd 3968 . 2 (𝜑𝐴 𝐵)
17 decsmf.f . 2 (𝜑𝐹:𝐴⟶ℝ)
18 decsmf.x . . . . 5 𝑥𝜑
19 nfv 1915 . . . . 5 𝑥 𝑎 ∈ ℝ
2018, 19nfan 1900 . . . 4 𝑥(𝜑𝑎 ∈ ℝ)
21 decsmf.y . . . . 5 𝑦𝜑
22 nfv 1915 . . . . 5 𝑦 𝑎 ∈ ℝ
2321, 22nfan 1900 . . . 4 𝑦(𝜑𝑎 ∈ ℝ)
248adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ)
2517frexr 45497 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2625adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
27 decsmf.i . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
28 breq1 5098 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
29 fveq2 6831 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
3029breq2d 5107 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑦) ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ (𝐹𝑤)))
3128, 30imbi12d 344 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ (𝑤𝑦 → (𝐹𝑦) ≤ (𝐹𝑤))))
32 breq2 5099 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑤𝑦𝑤𝑧))
33 fveq2 6831 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
3433breq1d 5105 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐹𝑦) ≤ (𝐹𝑤) ↔ (𝐹𝑧) ≤ (𝐹𝑤)))
3532, 34imbi12d 344 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑤𝑦 → (𝐹𝑦) ≤ (𝐹𝑤)) ↔ (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤))))
3631, 35cbvral2vw 3216 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3727, 36sylib 218 . . . . . 6 (𝜑 → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3837adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3938, 36sylibr 234 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
40 rexr 11168 . . . . 5 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
4140adantl 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
42 eqid 2733 . . . 4 {𝑥𝐴𝑎 < (𝐹𝑥)} = {𝑥𝐴𝑎 < (𝐹𝑥)}
43 fveq2 6831 . . . . . . 7 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
4443breq2d 5107 . . . . . 6 (𝑤 = 𝑥 → (𝑎 < (𝐹𝑤) ↔ 𝑎 < (𝐹𝑥)))
4544cbvrabv 3407 . . . . 5 {𝑤𝐴𝑎 < (𝐹𝑤)} = {𝑥𝐴𝑎 < (𝐹𝑥)}
4645supeq1i 9341 . . . 4 sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ) = sup({𝑥𝐴𝑎 < (𝐹𝑥)}, ℝ*, < )
47 eqid 2733 . . . 4 (-∞(,)sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < )) = (-∞(,)sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ))
48 eqid 2733 . . . 4 (-∞(,]sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < )) = (-∞(,]sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ))
4920, 23, 24, 26, 39, 2, 6, 41, 42, 46, 47, 48decsmflem 46878 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴))
507elexd 3462 . . . . 5 (𝜑𝐵 ∈ V)
51 reex 11107 . . . . . . 7 ℝ ∈ V
5251a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
5352, 8ssexd 5266 . . . . 5 (𝜑𝐴 ∈ V)
54 elrest 17341 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5550, 53, 54syl2anc 584 . . . 4 (𝜑 → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5655adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5749, 56mpbird 257 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴))
581, 7, 16, 17, 57issmfgtd 46873 1 (𝜑𝐹 ∈ (SMblFn‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2113  wral 3049  wrex 3058  {crab 3397  Vcvv 3438  cin 3898  wss 3899   cuni 4860   class class class wbr 5095  ran crn 5622  wf 6485  cfv 6489  (class class class)co 7355  supcsup 9334  cr 11015  -∞cmnf 11154  *cxr 11155   < clt 11156  cle 11157  (,)cioo 13255  (,]cioc 13256  t crest 17334  topGenctg 17351  Topctop 22818  SAlgcsalg 46420  SalGencsalgen 46424  SMblFncsmblfn 46807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cc 10336  ax-ac2 10364  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-inf 9337  df-card 9842  df-acn 9845  df-ac 10017  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-ioo 13259  df-ioc 13260  df-ico 13261  df-fl 13706  df-rest 17336  df-topgen 17357  df-top 22819  df-bases 22871  df-salg 46421  df-salgen 46425  df-smblfn 46808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator