Step | Hyp | Ref
| Expression |
1 | | nfv 1915 |
. 2
β’
β²ππ |
2 | | decsmf.j |
. . . . 5
β’ π½ = (topGenβran
(,)) |
3 | | retop 24500 |
. . . . 5
β’
(topGenβran (,)) β Top |
4 | 2, 3 | eqeltri 2827 |
. . . 4
β’ π½ β Top |
5 | 4 | a1i 11 |
. . 3
β’ (π β π½ β Top) |
6 | | decsmf.b |
. . 3
β’ π΅ = (SalGenβπ½) |
7 | 5, 6 | salgencld 45365 |
. 2
β’ (π β π΅ β SAlg) |
8 | | decsmf.a |
. . 3
β’ (π β π΄ β β) |
9 | 5, 6 | unisalgen2 45370 |
. . . 4
β’ (π β βͺ π΅ =
βͺ π½) |
10 | 2 | unieqi 4922 |
. . . . 5
β’ βͺ π½ =
βͺ (topGenβran (,)) |
11 | 10 | a1i 11 |
. . . 4
β’ (π β βͺ π½ =
βͺ (topGenβran (,))) |
12 | | uniretop 24501 |
. . . . . 6
β’ β =
βͺ (topGenβran (,)) |
13 | 12 | eqcomi 2739 |
. . . . 5
β’ βͺ (topGenβran (,)) = β |
14 | 13 | a1i 11 |
. . . 4
β’ (π β βͺ (topGenβran (,)) = β) |
15 | 9, 11, 14 | 3eqtrrd 2775 |
. . 3
β’ (π β β = βͺ π΅) |
16 | 8, 15 | sseqtrd 4023 |
. 2
β’ (π β π΄ β βͺ π΅) |
17 | | decsmf.f |
. 2
β’ (π β πΉ:π΄βΆβ) |
18 | | decsmf.x |
. . . . 5
β’
β²π₯π |
19 | | nfv 1915 |
. . . . 5
β’
β²π₯ π β β |
20 | 18, 19 | nfan 1900 |
. . . 4
β’
β²π₯(π β§ π β β) |
21 | | decsmf.y |
. . . . 5
β’
β²π¦π |
22 | | nfv 1915 |
. . . . 5
β’
β²π¦ π β β |
23 | 21, 22 | nfan 1900 |
. . . 4
β’
β²π¦(π β§ π β β) |
24 | 8 | adantr 479 |
. . . 4
β’ ((π β§ π β β) β π΄ β β) |
25 | 17 | frexr 44395 |
. . . . 5
β’ (π β πΉ:π΄βΆβ*) |
26 | 25 | adantr 479 |
. . . 4
β’ ((π β§ π β β) β πΉ:π΄βΆβ*) |
27 | | decsmf.i |
. . . . . . 7
β’ (π β βπ₯ β π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ¦) β€ (πΉβπ₯))) |
28 | | breq1 5152 |
. . . . . . . . 9
β’ (π₯ = π€ β (π₯ β€ π¦ β π€ β€ π¦)) |
29 | | fveq2 6892 |
. . . . . . . . . 10
β’ (π₯ = π€ β (πΉβπ₯) = (πΉβπ€)) |
30 | 29 | breq2d 5161 |
. . . . . . . . 9
β’ (π₯ = π€ β ((πΉβπ¦) β€ (πΉβπ₯) β (πΉβπ¦) β€ (πΉβπ€))) |
31 | 28, 30 | imbi12d 343 |
. . . . . . . 8
β’ (π₯ = π€ β ((π₯ β€ π¦ β (πΉβπ¦) β€ (πΉβπ₯)) β (π€ β€ π¦ β (πΉβπ¦) β€ (πΉβπ€)))) |
32 | | breq2 5153 |
. . . . . . . . 9
β’ (π¦ = π§ β (π€ β€ π¦ β π€ β€ π§)) |
33 | | fveq2 6892 |
. . . . . . . . . 10
β’ (π¦ = π§ β (πΉβπ¦) = (πΉβπ§)) |
34 | 33 | breq1d 5159 |
. . . . . . . . 9
β’ (π¦ = π§ β ((πΉβπ¦) β€ (πΉβπ€) β (πΉβπ§) β€ (πΉβπ€))) |
35 | 32, 34 | imbi12d 343 |
. . . . . . . 8
β’ (π¦ = π§ β ((π€ β€ π¦ β (πΉβπ¦) β€ (πΉβπ€)) β (π€ β€ π§ β (πΉβπ§) β€ (πΉβπ€)))) |
36 | 31, 35 | cbvral2vw 3236 |
. . . . . . 7
β’
(βπ₯ β
π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ¦) β€ (πΉβπ₯)) β βπ€ β π΄ βπ§ β π΄ (π€ β€ π§ β (πΉβπ§) β€ (πΉβπ€))) |
37 | 27, 36 | sylib 217 |
. . . . . 6
β’ (π β βπ€ β π΄ βπ§ β π΄ (π€ β€ π§ β (πΉβπ§) β€ (πΉβπ€))) |
38 | 37 | adantr 479 |
. . . . 5
β’ ((π β§ π β β) β βπ€ β π΄ βπ§ β π΄ (π€ β€ π§ β (πΉβπ§) β€ (πΉβπ€))) |
39 | 38, 36 | sylibr 233 |
. . . 4
β’ ((π β§ π β β) β βπ₯ β π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ¦) β€ (πΉβπ₯))) |
40 | | rexr 11266 |
. . . . 5
β’ (π β β β π β
β*) |
41 | 40 | adantl 480 |
. . . 4
β’ ((π β§ π β β) β π β β*) |
42 | | eqid 2730 |
. . . 4
β’ {π₯ β π΄ β£ π < (πΉβπ₯)} = {π₯ β π΄ β£ π < (πΉβπ₯)} |
43 | | fveq2 6892 |
. . . . . . 7
β’ (π€ = π₯ β (πΉβπ€) = (πΉβπ₯)) |
44 | 43 | breq2d 5161 |
. . . . . 6
β’ (π€ = π₯ β (π < (πΉβπ€) β π < (πΉβπ₯))) |
45 | 44 | cbvrabv 3440 |
. . . . 5
β’ {π€ β π΄ β£ π < (πΉβπ€)} = {π₯ β π΄ β£ π < (πΉβπ₯)} |
46 | 45 | supeq1i 9446 |
. . . 4
β’
sup({π€ β π΄ β£ π < (πΉβπ€)}, β*, < ) = sup({π₯ β π΄ β£ π < (πΉβπ₯)}, β*, <
) |
47 | | eqid 2730 |
. . . 4
β’
(-β(,)sup({π€
β π΄ β£ π < (πΉβπ€)}, β*, < )) =
(-β(,)sup({π€ β
π΄ β£ π < (πΉβπ€)}, β*, <
)) |
48 | | eqid 2730 |
. . . 4
β’
(-β(,]sup({π€
β π΄ β£ π < (πΉβπ€)}, β*, < )) =
(-β(,]sup({π€ β
π΄ β£ π < (πΉβπ€)}, β*, <
)) |
49 | 20, 23, 24, 26, 39, 2, 6, 41, 42, 46, 47, 48 | decsmflem 45782 |
. . 3
β’ ((π β§ π β β) β βπ β π΅ {π₯ β π΄ β£ π < (πΉβπ₯)} = (π β© π΄)) |
50 | 7 | elexd 3493 |
. . . . 5
β’ (π β π΅ β V) |
51 | | reex 11205 |
. . . . . . 7
β’ β
β V |
52 | 51 | a1i 11 |
. . . . . 6
β’ (π β β β
V) |
53 | 52, 8 | ssexd 5325 |
. . . . 5
β’ (π β π΄ β V) |
54 | | elrest 17379 |
. . . . 5
β’ ((π΅ β V β§ π΄ β V) β ({π₯ β π΄ β£ π < (πΉβπ₯)} β (π΅ βΎt π΄) β βπ β π΅ {π₯ β π΄ β£ π < (πΉβπ₯)} = (π β© π΄))) |
55 | 50, 53, 54 | syl2anc 582 |
. . . 4
β’ (π β ({π₯ β π΄ β£ π < (πΉβπ₯)} β (π΅ βΎt π΄) β βπ β π΅ {π₯ β π΄ β£ π < (πΉβπ₯)} = (π β© π΄))) |
56 | 55 | adantr 479 |
. . 3
β’ ((π β§ π β β) β ({π₯ β π΄ β£ π < (πΉβπ₯)} β (π΅ βΎt π΄) β βπ β π΅ {π₯ β π΄ β£ π < (πΉβπ₯)} = (π β© π΄))) |
57 | 49, 56 | mpbird 256 |
. 2
β’ ((π β§ π β β) β {π₯ β π΄ β£ π < (πΉβπ₯)} β (π΅ βΎt π΄)) |
58 | 1, 7, 16, 17, 57 | issmfgtd 45777 |
1
β’ (π β πΉ β (SMblFnβπ΅)) |