Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decsmf Structured version   Visualization version   GIF version

Theorem decsmf 43387
Description: A real-valued, nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
decsmf.x 𝑥𝜑
decsmf.y 𝑦𝜑
decsmf.a (𝜑𝐴 ⊆ ℝ)
decsmf.f (𝜑𝐹:𝐴⟶ℝ)
decsmf.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
decsmf.j 𝐽 = (topGen‘ran (,))
decsmf.b 𝐵 = (SalGen‘𝐽)
Assertion
Ref Expression
decsmf (𝜑𝐹 ∈ (SMblFn‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem decsmf
Dummy variables 𝑏 𝑤 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑎𝜑
2 decsmf.j . . . . 5 𝐽 = (topGen‘ran (,))
3 retop 23370 . . . . 5 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2889 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 decsmf.b . . 3 𝐵 = (SalGen‘𝐽)
75, 6salgencld 42976 . 2 (𝜑𝐵 ∈ SAlg)
8 decsmf.a . . 3 (𝜑𝐴 ⊆ ℝ)
95, 6unisalgen2 42981 . . . 4 (𝜑 𝐵 = 𝐽)
102unieqi 4816 . . . . 5 𝐽 = (topGen‘ran (,))
1110a1i 11 . . . 4 (𝜑 𝐽 = (topGen‘ran (,)))
12 uniretop 23371 . . . . . 6 ℝ = (topGen‘ran (,))
1312eqcomi 2810 . . . . 5 (topGen‘ran (,)) = ℝ
1413a1i 11 . . . 4 (𝜑 (topGen‘ran (,)) = ℝ)
159, 11, 143eqtrrd 2841 . . 3 (𝜑 → ℝ = 𝐵)
168, 15sseqtrd 3958 . 2 (𝜑𝐴 𝐵)
17 decsmf.f . 2 (𝜑𝐹:𝐴⟶ℝ)
18 decsmf.x . . . . 5 𝑥𝜑
19 nfv 1915 . . . . 5 𝑥 𝑎 ∈ ℝ
2018, 19nfan 1900 . . . 4 𝑥(𝜑𝑎 ∈ ℝ)
21 decsmf.y . . . . 5 𝑦𝜑
22 nfv 1915 . . . . 5 𝑦 𝑎 ∈ ℝ
2321, 22nfan 1900 . . . 4 𝑦(𝜑𝑎 ∈ ℝ)
248adantr 484 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ)
2517frexr 42006 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2625adantr 484 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
27 decsmf.i . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
28 breq1 5036 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
29 fveq2 6649 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
3029breq2d 5045 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑦) ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ (𝐹𝑤)))
3128, 30imbi12d 348 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ (𝑤𝑦 → (𝐹𝑦) ≤ (𝐹𝑤))))
32 breq2 5037 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑤𝑦𝑤𝑧))
33 fveq2 6649 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
3433breq1d 5043 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐹𝑦) ≤ (𝐹𝑤) ↔ (𝐹𝑧) ≤ (𝐹𝑤)))
3532, 34imbi12d 348 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑤𝑦 → (𝐹𝑦) ≤ (𝐹𝑤)) ↔ (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤))))
3631, 35cbvral2vw 3411 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3727, 36sylib 221 . . . . . 6 (𝜑 → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3837adantr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3938, 36sylibr 237 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
40 rexr 10680 . . . . 5 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
4140adantl 485 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
42 eqid 2801 . . . 4 {𝑥𝐴𝑎 < (𝐹𝑥)} = {𝑥𝐴𝑎 < (𝐹𝑥)}
43 fveq2 6649 . . . . . . 7 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
4443breq2d 5045 . . . . . 6 (𝑤 = 𝑥 → (𝑎 < (𝐹𝑤) ↔ 𝑎 < (𝐹𝑥)))
4544cbvrabv 3442 . . . . 5 {𝑤𝐴𝑎 < (𝐹𝑤)} = {𝑥𝐴𝑎 < (𝐹𝑥)}
4645supeq1i 8899 . . . 4 sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ) = sup({𝑥𝐴𝑎 < (𝐹𝑥)}, ℝ*, < )
47 eqid 2801 . . . 4 (-∞(,)sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < )) = (-∞(,)sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ))
48 eqid 2801 . . . 4 (-∞(,]sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < )) = (-∞(,]sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ))
4920, 23, 24, 26, 39, 2, 6, 41, 42, 46, 47, 48decsmflem 43386 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴))
507elexd 3464 . . . . 5 (𝜑𝐵 ∈ V)
51 reex 10621 . . . . . . 7 ℝ ∈ V
5251a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
5352, 8ssexd 5195 . . . . 5 (𝜑𝐴 ∈ V)
54 elrest 16696 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5550, 53, 54syl2anc 587 . . . 4 (𝜑 → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5655adantr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5749, 56mpbird 260 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴))
581, 7, 16, 17, 57issmfgtd 43381 1 (𝜑𝐹 ∈ (SMblFn‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wnf 1785  wcel 2112  wral 3109  wrex 3110  {crab 3113  Vcvv 3444  cin 3883  wss 3884   cuni 4803   class class class wbr 5033  ran crn 5524  wf 6324  cfv 6328  (class class class)co 7139  supcsup 8892  cr 10529  -∞cmnf 10666  *cxr 10667   < clt 10668  cle 10669  (,)cioo 12730  (,]cioc 12731  t crest 16689  topGenctg 16706  Topctop 21501  SAlgcsalg 42937  SalGencsalgen 42941  SMblFncsmblfn 43321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-ac2 9878  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-ioo 12734  df-ioc 12735  df-ico 12736  df-fl 13161  df-rest 16691  df-topgen 16712  df-top 21502  df-bases 21554  df-salg 42938  df-salgen 42942  df-smblfn 43322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator