Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decsmf Structured version   Visualization version   GIF version

Theorem decsmf 46723
Description: A real-valued, nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
decsmf.x 𝑥𝜑
decsmf.y 𝑦𝜑
decsmf.a (𝜑𝐴 ⊆ ℝ)
decsmf.f (𝜑𝐹:𝐴⟶ℝ)
decsmf.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
decsmf.j 𝐽 = (topGen‘ran (,))
decsmf.b 𝐵 = (SalGen‘𝐽)
Assertion
Ref Expression
decsmf (𝜑𝐹 ∈ (SMblFn‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem decsmf
Dummy variables 𝑏 𝑤 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1912 . 2 𝑎𝜑
2 decsmf.j . . . . 5 𝐽 = (topGen‘ran (,))
3 retop 24798 . . . . 5 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2835 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 decsmf.b . . 3 𝐵 = (SalGen‘𝐽)
75, 6salgencld 46305 . 2 (𝜑𝐵 ∈ SAlg)
8 decsmf.a . . 3 (𝜑𝐴 ⊆ ℝ)
95, 6unisalgen2 46310 . . . 4 (𝜑 𝐵 = 𝐽)
102unieqi 4924 . . . . 5 𝐽 = (topGen‘ran (,))
1110a1i 11 . . . 4 (𝜑 𝐽 = (topGen‘ran (,)))
12 uniretop 24799 . . . . . 6 ℝ = (topGen‘ran (,))
1312eqcomi 2744 . . . . 5 (topGen‘ran (,)) = ℝ
1413a1i 11 . . . 4 (𝜑 (topGen‘ran (,)) = ℝ)
159, 11, 143eqtrrd 2780 . . 3 (𝜑 → ℝ = 𝐵)
168, 15sseqtrd 4036 . 2 (𝜑𝐴 𝐵)
17 decsmf.f . 2 (𝜑𝐹:𝐴⟶ℝ)
18 decsmf.x . . . . 5 𝑥𝜑
19 nfv 1912 . . . . 5 𝑥 𝑎 ∈ ℝ
2018, 19nfan 1897 . . . 4 𝑥(𝜑𝑎 ∈ ℝ)
21 decsmf.y . . . . 5 𝑦𝜑
22 nfv 1912 . . . . 5 𝑦 𝑎 ∈ ℝ
2321, 22nfan 1897 . . . 4 𝑦(𝜑𝑎 ∈ ℝ)
248adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ)
2517frexr 45335 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2625adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
27 decsmf.i . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
28 breq1 5151 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
29 fveq2 6907 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
3029breq2d 5160 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑦) ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ (𝐹𝑤)))
3128, 30imbi12d 344 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ (𝑤𝑦 → (𝐹𝑦) ≤ (𝐹𝑤))))
32 breq2 5152 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑤𝑦𝑤𝑧))
33 fveq2 6907 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
3433breq1d 5158 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐹𝑦) ≤ (𝐹𝑤) ↔ (𝐹𝑧) ≤ (𝐹𝑤)))
3532, 34imbi12d 344 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑤𝑦 → (𝐹𝑦) ≤ (𝐹𝑤)) ↔ (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤))))
3631, 35cbvral2vw 3239 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3727, 36sylib 218 . . . . . 6 (𝜑 → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3837adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3938, 36sylibr 234 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
40 rexr 11305 . . . . 5 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
4140adantl 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
42 eqid 2735 . . . 4 {𝑥𝐴𝑎 < (𝐹𝑥)} = {𝑥𝐴𝑎 < (𝐹𝑥)}
43 fveq2 6907 . . . . . . 7 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
4443breq2d 5160 . . . . . 6 (𝑤 = 𝑥 → (𝑎 < (𝐹𝑤) ↔ 𝑎 < (𝐹𝑥)))
4544cbvrabv 3444 . . . . 5 {𝑤𝐴𝑎 < (𝐹𝑤)} = {𝑥𝐴𝑎 < (𝐹𝑥)}
4645supeq1i 9485 . . . 4 sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ) = sup({𝑥𝐴𝑎 < (𝐹𝑥)}, ℝ*, < )
47 eqid 2735 . . . 4 (-∞(,)sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < )) = (-∞(,)sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ))
48 eqid 2735 . . . 4 (-∞(,]sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < )) = (-∞(,]sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ))
4920, 23, 24, 26, 39, 2, 6, 41, 42, 46, 47, 48decsmflem 46722 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴))
507elexd 3502 . . . . 5 (𝜑𝐵 ∈ V)
51 reex 11244 . . . . . . 7 ℝ ∈ V
5251a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
5352, 8ssexd 5330 . . . . 5 (𝜑𝐴 ∈ V)
54 elrest 17474 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5550, 53, 54syl2anc 584 . . . 4 (𝜑 → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5655adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5749, 56mpbird 257 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴))
581, 7, 16, 17, 57issmfgtd 46717 1 (𝜑𝐹 ∈ (SMblFn‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1780  wcel 2106  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cin 3962  wss 3963   cuni 4912   class class class wbr 5148  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  supcsup 9478  cr 11152  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  (,)cioo 13384  (,]cioc 13385  t crest 17467  topGenctg 17484  Topctop 22915  SAlgcsalg 46264  SalGencsalgen 46268  SMblFncsmblfn 46651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-ioo 13388  df-ioc 13389  df-ico 13390  df-fl 13829  df-rest 17469  df-topgen 17490  df-top 22916  df-bases 22969  df-salg 46265  df-salgen 46269  df-smblfn 46652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator