Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decsmf Structured version   Visualization version   GIF version

Theorem decsmf 46688
Description: A real-valued, nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
decsmf.x 𝑥𝜑
decsmf.y 𝑦𝜑
decsmf.a (𝜑𝐴 ⊆ ℝ)
decsmf.f (𝜑𝐹:𝐴⟶ℝ)
decsmf.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
decsmf.j 𝐽 = (topGen‘ran (,))
decsmf.b 𝐵 = (SalGen‘𝐽)
Assertion
Ref Expression
decsmf (𝜑𝐹 ∈ (SMblFn‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem decsmf
Dummy variables 𝑏 𝑤 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . 2 𝑎𝜑
2 decsmf.j . . . . 5 𝐽 = (topGen‘ran (,))
3 retop 24803 . . . . 5 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2840 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 decsmf.b . . 3 𝐵 = (SalGen‘𝐽)
75, 6salgencld 46270 . 2 (𝜑𝐵 ∈ SAlg)
8 decsmf.a . . 3 (𝜑𝐴 ⊆ ℝ)
95, 6unisalgen2 46275 . . . 4 (𝜑 𝐵 = 𝐽)
102unieqi 4943 . . . . 5 𝐽 = (topGen‘ran (,))
1110a1i 11 . . . 4 (𝜑 𝐽 = (topGen‘ran (,)))
12 uniretop 24804 . . . . . 6 ℝ = (topGen‘ran (,))
1312eqcomi 2749 . . . . 5 (topGen‘ran (,)) = ℝ
1413a1i 11 . . . 4 (𝜑 (topGen‘ran (,)) = ℝ)
159, 11, 143eqtrrd 2785 . . 3 (𝜑 → ℝ = 𝐵)
168, 15sseqtrd 4049 . 2 (𝜑𝐴 𝐵)
17 decsmf.f . 2 (𝜑𝐹:𝐴⟶ℝ)
18 decsmf.x . . . . 5 𝑥𝜑
19 nfv 1913 . . . . 5 𝑥 𝑎 ∈ ℝ
2018, 19nfan 1898 . . . 4 𝑥(𝜑𝑎 ∈ ℝ)
21 decsmf.y . . . . 5 𝑦𝜑
22 nfv 1913 . . . . 5 𝑦 𝑎 ∈ ℝ
2321, 22nfan 1898 . . . 4 𝑦(𝜑𝑎 ∈ ℝ)
248adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ)
2517frexr 45300 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2625adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
27 decsmf.i . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
28 breq1 5169 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
29 fveq2 6920 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
3029breq2d 5178 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑦) ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ (𝐹𝑤)))
3128, 30imbi12d 344 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ (𝑤𝑦 → (𝐹𝑦) ≤ (𝐹𝑤))))
32 breq2 5170 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑤𝑦𝑤𝑧))
33 fveq2 6920 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
3433breq1d 5176 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐹𝑦) ≤ (𝐹𝑤) ↔ (𝐹𝑧) ≤ (𝐹𝑤)))
3532, 34imbi12d 344 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑤𝑦 → (𝐹𝑦) ≤ (𝐹𝑤)) ↔ (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤))))
3631, 35cbvral2vw 3247 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3727, 36sylib 218 . . . . . 6 (𝜑 → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3837adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑧) ≤ (𝐹𝑤)))
3938, 36sylibr 234 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
40 rexr 11336 . . . . 5 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
4140adantl 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
42 eqid 2740 . . . 4 {𝑥𝐴𝑎 < (𝐹𝑥)} = {𝑥𝐴𝑎 < (𝐹𝑥)}
43 fveq2 6920 . . . . . . 7 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
4443breq2d 5178 . . . . . 6 (𝑤 = 𝑥 → (𝑎 < (𝐹𝑤) ↔ 𝑎 < (𝐹𝑥)))
4544cbvrabv 3454 . . . . 5 {𝑤𝐴𝑎 < (𝐹𝑤)} = {𝑥𝐴𝑎 < (𝐹𝑥)}
4645supeq1i 9516 . . . 4 sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ) = sup({𝑥𝐴𝑎 < (𝐹𝑥)}, ℝ*, < )
47 eqid 2740 . . . 4 (-∞(,)sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < )) = (-∞(,)sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ))
48 eqid 2740 . . . 4 (-∞(,]sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < )) = (-∞(,]sup({𝑤𝐴𝑎 < (𝐹𝑤)}, ℝ*, < ))
4920, 23, 24, 26, 39, 2, 6, 41, 42, 46, 47, 48decsmflem 46687 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴))
507elexd 3512 . . . . 5 (𝜑𝐵 ∈ V)
51 reex 11275 . . . . . . 7 ℝ ∈ V
5251a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
5352, 8ssexd 5342 . . . . 5 (𝜑𝐴 ∈ V)
54 elrest 17487 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5550, 53, 54syl2anc 583 . . . 4 (𝜑 → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5655adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴𝑎 < (𝐹𝑥)} = (𝑏𝐴)))
5749, 56mpbird 257 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎 < (𝐹𝑥)} ∈ (𝐵t 𝐴))
581, 7, 16, 17, 57issmfgtd 46682 1 (𝜑𝐹 ∈ (SMblFn‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  wss 3976   cuni 4931   class class class wbr 5166  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cr 11183  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  (,)cioo 13407  (,]cioc 13408  t crest 17480  topGenctg 17497  Topctop 22920  SAlgcsalg 46229  SalGencsalgen 46233  SMblFncsmblfn 46616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ioc 13412  df-ico 13413  df-fl 13843  df-rest 17482  df-topgen 17503  df-top 22921  df-bases 22974  df-salg 46230  df-salgen 46234  df-smblfn 46617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator