Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. 2
⊢
Ⅎ𝑎𝜑 |
2 | | decsmf.j |
. . . . 5
⊢ 𝐽 = (topGen‘ran
(,)) |
3 | | retop 23831 |
. . . . 5
⊢
(topGen‘ran (,)) ∈ Top |
4 | 2, 3 | eqeltri 2835 |
. . . 4
⊢ 𝐽 ∈ Top |
5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐽 ∈ Top) |
6 | | decsmf.b |
. . 3
⊢ 𝐵 = (SalGen‘𝐽) |
7 | 5, 6 | salgencld 43778 |
. 2
⊢ (𝜑 → 𝐵 ∈ SAlg) |
8 | | decsmf.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
9 | 5, 6 | unisalgen2 43783 |
. . . 4
⊢ (𝜑 → ∪ 𝐵 =
∪ 𝐽) |
10 | 2 | unieqi 4849 |
. . . . 5
⊢ ∪ 𝐽 =
∪ (topGen‘ran (,)) |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → ∪ 𝐽 =
∪ (topGen‘ran (,))) |
12 | | uniretop 23832 |
. . . . . 6
⊢ ℝ =
∪ (topGen‘ran (,)) |
13 | 12 | eqcomi 2747 |
. . . . 5
⊢ ∪ (topGen‘ran (,)) = ℝ |
14 | 13 | a1i 11 |
. . . 4
⊢ (𝜑 → ∪ (topGen‘ran (,)) = ℝ) |
15 | 9, 11, 14 | 3eqtrrd 2783 |
. . 3
⊢ (𝜑 → ℝ = ∪ 𝐵) |
16 | 8, 15 | sseqtrd 3957 |
. 2
⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐵) |
17 | | decsmf.f |
. 2
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
18 | | decsmf.x |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
19 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑥 𝑎 ∈ ℝ |
20 | 18, 19 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
21 | | decsmf.y |
. . . . 5
⊢
Ⅎ𝑦𝜑 |
22 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑦 𝑎 ∈ ℝ |
23 | 21, 22 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑦(𝜑 ∧ 𝑎 ∈ ℝ) |
24 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ) |
25 | 17 | frexr 42814 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
26 | 25 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*) |
27 | | decsmf.i |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
28 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) |
29 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
30 | 29 | breq2d 5082 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑦) ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ≤ (𝐹‘𝑤))) |
31 | 28, 30 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥)) ↔ (𝑤 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑤)))) |
32 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧)) |
33 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
34 | 33 | breq1d 5080 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝐹‘𝑦) ≤ (𝐹‘𝑤) ↔ (𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
35 | 32, 34 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → ((𝑤 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑤)) ↔ (𝑤 ≤ 𝑧 → (𝐹‘𝑧) ≤ (𝐹‘𝑤)))) |
36 | 31, 35 | cbvral2vw 3385 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥)) ↔ ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
37 | 27, 36 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
38 | 37 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
39 | 38, 36 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
40 | | rexr 10952 |
. . . . 5
⊢ (𝑎 ∈ ℝ → 𝑎 ∈
ℝ*) |
41 | 40 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
42 | | eqid 2738 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)} |
43 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (𝐹‘𝑤) = (𝐹‘𝑥)) |
44 | 43 | breq2d 5082 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (𝑎 < (𝐹‘𝑤) ↔ 𝑎 < (𝐹‘𝑥))) |
45 | 44 | cbvrabv 3416 |
. . . . 5
⊢ {𝑤 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑤)} = {𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)} |
46 | 45 | supeq1i 9136 |
. . . 4
⊢
sup({𝑤 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑤)}, ℝ*, < ) = sup({𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)}, ℝ*, <
) |
47 | | eqid 2738 |
. . . 4
⊢
(-∞(,)sup({𝑤
∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑤)}, ℝ*, < )) =
(-∞(,)sup({𝑤 ∈
𝐴 ∣ 𝑎 < (𝐹‘𝑤)}, ℝ*, <
)) |
48 | | eqid 2738 |
. . . 4
⊢
(-∞(,]sup({𝑤
∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑤)}, ℝ*, < )) =
(-∞(,]sup({𝑤 ∈
𝐴 ∣ 𝑎 < (𝐹‘𝑤)}, ℝ*, <
)) |
49 | 20, 23, 24, 26, 39, 2, 6, 41, 42, 46, 47, 48 | decsmflem 44188 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)} = (𝑏 ∩ 𝐴)) |
50 | 7 | elexd 3442 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
51 | | reex 10893 |
. . . . . . 7
⊢ ℝ
∈ V |
52 | 51 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ∈
V) |
53 | 52, 8 | ssexd 5243 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
54 | | elrest 17055 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → ({𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)} = (𝑏 ∩ 𝐴))) |
55 | 50, 53, 54 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)} = (𝑏 ∩ 𝐴))) |
56 | 55 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)} = (𝑏 ∩ 𝐴))) |
57 | 49, 56 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝐵 ↾t 𝐴)) |
58 | 1, 7, 16, 17, 57 | issmfgtd 44183 |
1
⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) |