| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsupdmmbllem | Structured version Visualization version GIF version | ||
| Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| smfsupdmmbllem.1 | ⊢ Ⅎ𝑛𝜑 |
| smfsupdmmbllem.2 | ⊢ Ⅎ𝑥𝜑 |
| smfsupdmmbllem.3 | ⊢ Ⅎ𝑚𝜑 |
| smfsupdmmbllem.4 | ⊢ Ⅎ𝑥𝐹 |
| smfsupdmmbllem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| smfsupdmmbllem.6 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| smfsupdmmbllem.7 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfsupdmmbllem.8 | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
| smfsupdmmbllem.9 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
| smfsupdmmbllem.10 | ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} |
| smfsupdmmbllem.11 | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
| smfsupdmmbllem.12 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
| Ref | Expression |
|---|---|
| smfsupdmmbllem | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfsupdmmbllem.1 | . . 3 ⊢ Ⅎ𝑛𝜑 | |
| 2 | smfsupdmmbllem.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | smfsupdmmbllem.3 | . . 3 ⊢ Ⅎ𝑚𝜑 | |
| 4 | smfsupdmmbllem.4 | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 5 | smfsupdmmbllem.7 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 7 | smfsupdmmbllem.8 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
| 8 | 7 | ffvelcdmda 7056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
| 9 | eqid 2729 | . . . . 5 ⊢ dom (𝐹‘𝑛) = dom (𝐹‘𝑛) | |
| 10 | 6, 8, 9 | smff 46730 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
| 11 | 10 | frexr 45381 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ*) |
| 12 | smfsupdmmbllem.10 | . . 3 ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} | |
| 13 | smfsupdmmbllem.12 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | |
| 14 | smfsupdmmbllem.11 | . . 3 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) | |
| 15 | 1, 2, 3, 4, 11, 12, 13, 14 | fsupdm2 46841 | . 2 ⊢ (𝜑 → dom 𝐺 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚)) |
| 16 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑚𝑆 | |
| 17 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑚ℕ | |
| 18 | nnct 13946 | . . . 4 ⊢ ℕ ≼ ω | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
| 20 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑛 𝑚 ∈ ℕ | |
| 21 | 1, 20 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑚 ∈ ℕ) |
| 22 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑛𝑆 | |
| 23 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑛𝑍 | |
| 24 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑆 ∈ SAlg) |
| 25 | smfsupdmmbllem.6 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 26 | 25 | uzct 45057 | . . . . 5 ⊢ 𝑍 ≼ ω |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≼ ω) |
| 28 | smfsupdmmbllem.5 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 29 | 28, 25 | uzn0d 45421 | . . . . 5 ⊢ (𝜑 → 𝑍 ≠ ∅) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≠ ∅) |
| 31 | 24 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 32 | smfsupdmmbllem.9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) | |
| 33 | 32 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
| 34 | 31, 33 | salrestss 46359 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝑆 ↾t dom (𝐹‘𝑛)) ⊆ 𝑆) |
| 35 | nfv 1914 | . . . . . . . . . 10 ⊢ Ⅎ𝑚 𝑛 ∈ 𝑍 | |
| 36 | 3, 35 | nfan 1899 | . . . . . . . . 9 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
| 37 | nfcv 2891 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑛 | |
| 38 | 4, 37 | nffv 6868 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝐹‘𝑛) |
| 39 | 8 | adantlr 715 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
| 40 | nnxr 45273 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ*) | |
| 41 | 40 | ad2antlr 727 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑚 ∈ ℝ*) |
| 42 | 38, 31, 39, 9, 41 | smfpimltxr 46745 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 43 | 42 | an32s 652 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 44 | 36, 43 | fmptd2f 45229 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 45 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
| 46 | nnex 12192 | . . . . . . . . . . 11 ⊢ ℕ ∈ V | |
| 47 | 46 | mptex 7197 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}) ∈ V |
| 48 | 14 | fvmpt2 6979 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ 𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}) ∈ V) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
| 49 | 45, 47, 48 | sylancl 586 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
| 50 | 49 | feq1d 6670 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)) ↔ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)))) |
| 51 | 44, 50 | mpbird 257 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 52 | 51 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 53 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑚 ∈ ℕ) | |
| 54 | 52, 53 | ffvelcdmd 7057 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 55 | 34, 54 | sseldd 3947 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 56 | 21, 22, 23, 24, 27, 30, 55 | saliinclf 46324 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 57 | 3, 16, 17, 5, 19, 56 | saliunclf 46320 | . 2 ⊢ (𝜑 → ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 58 | 15, 57 | eqeltrd 2828 | 1 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3405 Vcvv 3447 ∅c0 4296 ∪ ciun 4955 ∩ ciin 4956 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ωcom 7842 ≼ cdom 8916 supcsup 9391 ℝcr 11067 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ℕcn 12186 ℤcz 12529 ℤ≥cuz 12793 ↾t crest 17383 SAlgcsalg 46306 SMblFncsmblfn 46693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-ioo 13310 df-ico 13312 df-rest 17385 df-salg 46307 df-smblfn 46694 |
| This theorem is referenced by: smfsupdmmbl 46843 |
| Copyright terms: Public domain | W3C validator |