![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsupdmmbllem | Structured version Visualization version GIF version |
Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
Ref | Expression |
---|---|
smfsupdmmbllem.1 | ⊢ Ⅎ𝑛𝜑 |
smfsupdmmbllem.2 | ⊢ Ⅎ𝑥𝜑 |
smfsupdmmbllem.3 | ⊢ Ⅎ𝑚𝜑 |
smfsupdmmbllem.4 | ⊢ Ⅎ𝑥𝐹 |
smfsupdmmbllem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
smfsupdmmbllem.6 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
smfsupdmmbllem.7 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfsupdmmbllem.8 | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
smfsupdmmbllem.9 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
smfsupdmmbllem.10 | ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} |
smfsupdmmbllem.11 | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
smfsupdmmbllem.12 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
Ref | Expression |
---|---|
smfsupdmmbllem | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfsupdmmbllem.1 | . . 3 ⊢ Ⅎ𝑛𝜑 | |
2 | smfsupdmmbllem.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | smfsupdmmbllem.3 | . . 3 ⊢ Ⅎ𝑚𝜑 | |
4 | smfsupdmmbllem.4 | . . 3 ⊢ Ⅎ𝑥𝐹 | |
5 | smfsupdmmbllem.7 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
7 | smfsupdmmbllem.8 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
8 | 7 | ffvelcdmda 7118 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
9 | eqid 2740 | . . . . 5 ⊢ dom (𝐹‘𝑛) = dom (𝐹‘𝑛) | |
10 | 6, 8, 9 | smff 46653 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
11 | 10 | frexr 45300 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ*) |
12 | smfsupdmmbllem.10 | . . 3 ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} | |
13 | smfsupdmmbllem.12 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | |
14 | smfsupdmmbllem.11 | . . 3 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) | |
15 | 1, 2, 3, 4, 11, 12, 13, 14 | fsupdm2 46764 | . 2 ⊢ (𝜑 → dom 𝐺 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚)) |
16 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑚𝑆 | |
17 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑚ℕ | |
18 | nnct 14032 | . . . 4 ⊢ ℕ ≼ ω | |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
20 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑛 𝑚 ∈ ℕ | |
21 | 1, 20 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑚 ∈ ℕ) |
22 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑛𝑆 | |
23 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑛𝑍 | |
24 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑆 ∈ SAlg) |
25 | smfsupdmmbllem.6 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
26 | 25 | uzct 44965 | . . . . 5 ⊢ 𝑍 ≼ ω |
27 | 26 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≼ ω) |
28 | smfsupdmmbllem.5 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
29 | 28, 25 | uzn0d 45340 | . . . . 5 ⊢ (𝜑 → 𝑍 ≠ ∅) |
30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≠ ∅) |
31 | 24 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
32 | smfsupdmmbllem.9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) | |
33 | 32 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
34 | 31, 33 | salrestss 46282 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝑆 ↾t dom (𝐹‘𝑛)) ⊆ 𝑆) |
35 | nfv 1913 | . . . . . . . . . 10 ⊢ Ⅎ𝑚 𝑛 ∈ 𝑍 | |
36 | 3, 35 | nfan 1898 | . . . . . . . . 9 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
37 | nfcv 2908 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑛 | |
38 | 4, 37 | nffv 6930 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝐹‘𝑛) |
39 | 8 | adantlr 714 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
40 | nnxr 45189 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ*) | |
41 | 40 | ad2antlr 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑚 ∈ ℝ*) |
42 | 38, 31, 39, 9, 41 | smfpimltxr 46668 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
43 | 42 | an32s 651 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
44 | 36, 43 | fmptd2f 45142 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
45 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
46 | nnex 12299 | . . . . . . . . . . 11 ⊢ ℕ ∈ V | |
47 | 46 | mptex 7260 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}) ∈ V |
48 | 14 | fvmpt2 7040 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ 𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}) ∈ V) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
49 | 45, 47, 48 | sylancl 585 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
50 | 49 | feq1d 6732 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)) ↔ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)))) |
51 | 44, 50 | mpbird 257 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
52 | 51 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
53 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑚 ∈ ℕ) | |
54 | 52, 53 | ffvelcdmd 7119 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
55 | 34, 54 | sseldd 4009 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
56 | 21, 22, 23, 24, 27, 30, 55 | saliinclf 46247 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
57 | 3, 16, 17, 5, 19, 56 | saliunclf 46243 | . 2 ⊢ (𝜑 → ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
58 | 15, 57 | eqeltrd 2844 | 1 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ∅c0 4352 ∪ ciun 5015 ∩ ciin 5016 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ≼ cdom 9001 supcsup 9509 ℝcr 11183 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 ℕcn 12293 ℤcz 12639 ℤ≥cuz 12903 ↾t crest 17480 SAlgcsalg 46229 SMblFncsmblfn 46616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-ioo 13411 df-ico 13413 df-rest 17482 df-salg 46230 df-smblfn 46617 |
This theorem is referenced by: smfsupdmmbl 46766 |
Copyright terms: Public domain | W3C validator |