| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsupdmmbllem | Structured version Visualization version GIF version | ||
| Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| smfsupdmmbllem.1 | ⊢ Ⅎ𝑛𝜑 |
| smfsupdmmbllem.2 | ⊢ Ⅎ𝑥𝜑 |
| smfsupdmmbllem.3 | ⊢ Ⅎ𝑚𝜑 |
| smfsupdmmbllem.4 | ⊢ Ⅎ𝑥𝐹 |
| smfsupdmmbllem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| smfsupdmmbllem.6 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| smfsupdmmbllem.7 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfsupdmmbllem.8 | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
| smfsupdmmbllem.9 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
| smfsupdmmbllem.10 | ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} |
| smfsupdmmbllem.11 | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
| smfsupdmmbllem.12 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
| Ref | Expression |
|---|---|
| smfsupdmmbllem | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfsupdmmbllem.1 | . . 3 ⊢ Ⅎ𝑛𝜑 | |
| 2 | smfsupdmmbllem.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | smfsupdmmbllem.3 | . . 3 ⊢ Ⅎ𝑚𝜑 | |
| 4 | smfsupdmmbllem.4 | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 5 | smfsupdmmbllem.7 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 7 | smfsupdmmbllem.8 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
| 8 | 7 | ffvelcdmda 7012 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
| 9 | eqid 2731 | . . . . 5 ⊢ dom (𝐹‘𝑛) = dom (𝐹‘𝑛) | |
| 10 | 6, 8, 9 | smff 46770 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
| 11 | 10 | frexr 45423 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ*) |
| 12 | smfsupdmmbllem.10 | . . 3 ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} | |
| 13 | smfsupdmmbllem.12 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | |
| 14 | smfsupdmmbllem.11 | . . 3 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) | |
| 15 | 1, 2, 3, 4, 11, 12, 13, 14 | fsupdm2 46881 | . 2 ⊢ (𝜑 → dom 𝐺 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚)) |
| 16 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑚𝑆 | |
| 17 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑚ℕ | |
| 18 | nnct 13883 | . . . 4 ⊢ ℕ ≼ ω | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
| 20 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑛 𝑚 ∈ ℕ | |
| 21 | 1, 20 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑚 ∈ ℕ) |
| 22 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑛𝑆 | |
| 23 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑛𝑍 | |
| 24 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑆 ∈ SAlg) |
| 25 | smfsupdmmbllem.6 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 26 | 25 | uzct 45100 | . . . . 5 ⊢ 𝑍 ≼ ω |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≼ ω) |
| 28 | smfsupdmmbllem.5 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 29 | 28, 25 | uzn0d 45463 | . . . . 5 ⊢ (𝜑 → 𝑍 ≠ ∅) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≠ ∅) |
| 31 | 24 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 32 | smfsupdmmbllem.9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) | |
| 33 | 32 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
| 34 | 31, 33 | salrestss 46399 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝑆 ↾t dom (𝐹‘𝑛)) ⊆ 𝑆) |
| 35 | nfv 1915 | . . . . . . . . . 10 ⊢ Ⅎ𝑚 𝑛 ∈ 𝑍 | |
| 36 | 3, 35 | nfan 1900 | . . . . . . . . 9 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
| 37 | nfcv 2894 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑛 | |
| 38 | 4, 37 | nffv 6827 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝐹‘𝑛) |
| 39 | 8 | adantlr 715 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
| 40 | nnxr 45316 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ*) | |
| 41 | 40 | ad2antlr 727 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑚 ∈ ℝ*) |
| 42 | 38, 31, 39, 9, 41 | smfpimltxr 46785 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 43 | 42 | an32s 652 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 44 | 36, 43 | fmptd2f 45272 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 45 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
| 46 | nnex 12126 | . . . . . . . . . . 11 ⊢ ℕ ∈ V | |
| 47 | 46 | mptex 7152 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}) ∈ V |
| 48 | 14 | fvmpt2 6935 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ 𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}) ∈ V) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
| 49 | 45, 47, 48 | sylancl 586 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
| 50 | 49 | feq1d 6628 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)) ↔ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)))) |
| 51 | 44, 50 | mpbird 257 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 52 | 51 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 53 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑚 ∈ ℕ) | |
| 54 | 52, 53 | ffvelcdmd 7013 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 55 | 34, 54 | sseldd 3930 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 56 | 21, 22, 23, 24, 27, 30, 55 | saliinclf 46364 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 57 | 3, 16, 17, 5, 19, 56 | saliunclf 46360 | . 2 ⊢ (𝜑 → ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 58 | 15, 57 | eqeltrd 2831 | 1 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 Vcvv 3436 ∅c0 4278 ∪ ciun 4936 ∩ ciin 4937 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ran crn 5612 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ωcom 7791 ≼ cdom 8862 supcsup 9319 ℝcr 11000 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 ℕcn 12120 ℤcz 12463 ℤ≥cuz 12727 ↾t crest 17319 SAlgcsalg 46346 SMblFncsmblfn 46733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cc 10321 ax-ac2 10349 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9827 df-acn 9830 df-ac 10002 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-ioo 13244 df-ico 13246 df-rest 17321 df-salg 46347 df-smblfn 46734 |
| This theorem is referenced by: smfsupdmmbl 46883 |
| Copyright terms: Public domain | W3C validator |