Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupdmmbllem Structured version   Visualization version   GIF version

Theorem smfsupdmmbllem 46845
Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
smfsupdmmbllem.1 𝑛𝜑
smfsupdmmbllem.2 𝑥𝜑
smfsupdmmbllem.3 𝑚𝜑
smfsupdmmbllem.4 𝑥𝐹
smfsupdmmbllem.5 (𝜑𝑀 ∈ ℤ)
smfsupdmmbllem.6 𝑍 = (ℤ𝑀)
smfsupdmmbllem.7 (𝜑𝑆 ∈ SAlg)
smfsupdmmbllem.8 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsupdmmbllem.9 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
smfsupdmmbllem.10 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsupdmmbllem.11 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
smfsupdmmbllem.12 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsupdmmbllem (𝜑 → dom 𝐺𝑆)
Distinct variable groups:   𝐷,𝑚   𝑚,𝐹,𝑦   𝑦,𝐻   𝑆,𝑚,𝑛   𝑚,𝑍,𝑛,𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑦,𝑚,𝑛)

Proof of Theorem smfsupdmmbllem
StepHypRef Expression
1 smfsupdmmbllem.1 . . 3 𝑛𝜑
2 smfsupdmmbllem.2 . . 3 𝑥𝜑
3 smfsupdmmbllem.3 . . 3 𝑚𝜑
4 smfsupdmmbllem.4 . . 3 𝑥𝐹
5 smfsupdmmbllem.7 . . . . . 6 (𝜑𝑆 ∈ SAlg)
65adantr 480 . . . . 5 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
7 smfsupdmmbllem.8 . . . . . 6 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
87ffvelcdmda 7022 . . . . 5 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
9 eqid 2729 . . . . 5 dom (𝐹𝑛) = dom (𝐹𝑛)
106, 8, 9smff 46733 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
1110frexr 45384 . . 3 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
12 smfsupdmmbllem.10 . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
13 smfsupdmmbllem.12 . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
14 smfsupdmmbllem.11 . . 3 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
151, 2, 3, 4, 11, 12, 13, 14fsupdm2 46844 . 2 (𝜑 → dom 𝐺 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
16 nfcv 2891 . . 3 𝑚𝑆
17 nfcv 2891 . . 3 𝑚
18 nnct 13907 . . . 4 ℕ ≼ ω
1918a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
20 nfv 1914 . . . . 5 𝑛 𝑚 ∈ ℕ
211, 20nfan 1899 . . . 4 𝑛(𝜑𝑚 ∈ ℕ)
22 nfcv 2891 . . . 4 𝑛𝑆
23 nfcv 2891 . . . 4 𝑛𝑍
245adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ SAlg)
25 smfsupdmmbllem.6 . . . . . 6 𝑍 = (ℤ𝑀)
2625uzct 45061 . . . . 5 𝑍 ≼ ω
2726a1i 11 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑍 ≼ ω)
28 smfsupdmmbllem.5 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2928, 25uzn0d 45424 . . . . 5 (𝜑𝑍 ≠ ∅)
3029adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑍 ≠ ∅)
3124adantr 480 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑆 ∈ SAlg)
32 smfsupdmmbllem.9 . . . . . . 7 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
3332adantlr 715 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
3431, 33salrestss 46362 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝑆t dom (𝐹𝑛)) ⊆ 𝑆)
35 nfv 1914 . . . . . . . . . 10 𝑚 𝑛𝑍
363, 35nfan 1899 . . . . . . . . 9 𝑚(𝜑𝑛𝑍)
37 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑛
384, 37nffv 6836 . . . . . . . . . . 11 𝑥(𝐹𝑛)
398adantlr 715 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
40 nnxr 45277 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ*)
4140ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ ℝ*)
4238, 31, 39, 9, 41smfpimltxr 46748 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ (𝑆t dom (𝐹𝑛)))
4342an32s 652 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ (𝑆t dom (𝐹𝑛)))
4436, 43fmptd2f 45233 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆t dom (𝐹𝑛)))
45 simpr 484 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑛𝑍)
46 nnex 12153 . . . . . . . . . . 11 ℕ ∈ V
4746mptex 7163 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V
4814fvmpt2 6945 . . . . . . . . . 10 ((𝑛𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
4945, 47, 48sylancl 586 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
5049feq1d 6638 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)) ↔ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆t dom (𝐹𝑛))))
5144, 50mpbird 257 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)))
5251adantlr 715 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)))
53 simplr 768 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
5452, 53ffvelcdmd 7023 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) ∈ (𝑆t dom (𝐹𝑛)))
5534, 54sseldd 3938 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) ∈ 𝑆)
5621, 22, 23, 24, 27, 30, 55saliinclf 46327 . . 3 ((𝜑𝑚 ∈ ℕ) → 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∈ 𝑆)
573, 16, 17, 5, 19, 56saliunclf 46323 . 2 (𝜑 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∈ 𝑆)
5815, 57eqeltrd 2828 1 (𝜑 → dom 𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  c0 4286   ciun 4944   ciin 4945   class class class wbr 5095  cmpt 5176  dom cdm 5623  ran crn 5624  wf 6482  cfv 6486  (class class class)co 7353  ωcom 7806  cdom 8877  supcsup 9349  cr 11027  *cxr 11167   < clt 11168  cle 11169  cn 12147  cz 12490  cuz 12754  t crest 17343  SAlgcsalg 46309  SMblFncsmblfn 46696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-ioo 13271  df-ico 13273  df-rest 17345  df-salg 46310  df-smblfn 46697
This theorem is referenced by:  smfsupdmmbl  46846
  Copyright terms: Public domain W3C validator