Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupdmmbllem Structured version   Visualization version   GIF version

Theorem smfsupdmmbllem 46842
Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
smfsupdmmbllem.1 𝑛𝜑
smfsupdmmbllem.2 𝑥𝜑
smfsupdmmbllem.3 𝑚𝜑
smfsupdmmbllem.4 𝑥𝐹
smfsupdmmbllem.5 (𝜑𝑀 ∈ ℤ)
smfsupdmmbllem.6 𝑍 = (ℤ𝑀)
smfsupdmmbllem.7 (𝜑𝑆 ∈ SAlg)
smfsupdmmbllem.8 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsupdmmbllem.9 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
smfsupdmmbllem.10 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsupdmmbllem.11 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
smfsupdmmbllem.12 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsupdmmbllem (𝜑 → dom 𝐺𝑆)
Distinct variable groups:   𝐷,𝑚   𝑚,𝐹,𝑦   𝑦,𝐻   𝑆,𝑚,𝑛   𝑚,𝑍,𝑛,𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑦,𝑚,𝑛)

Proof of Theorem smfsupdmmbllem
StepHypRef Expression
1 smfsupdmmbllem.1 . . 3 𝑛𝜑
2 smfsupdmmbllem.2 . . 3 𝑥𝜑
3 smfsupdmmbllem.3 . . 3 𝑚𝜑
4 smfsupdmmbllem.4 . . 3 𝑥𝐹
5 smfsupdmmbllem.7 . . . . . 6 (𝜑𝑆 ∈ SAlg)
65adantr 480 . . . . 5 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
7 smfsupdmmbllem.8 . . . . . 6 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
87ffvelcdmda 7056 . . . . 5 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
9 eqid 2729 . . . . 5 dom (𝐹𝑛) = dom (𝐹𝑛)
106, 8, 9smff 46730 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
1110frexr 45381 . . 3 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
12 smfsupdmmbllem.10 . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
13 smfsupdmmbllem.12 . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
14 smfsupdmmbllem.11 . . 3 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
151, 2, 3, 4, 11, 12, 13, 14fsupdm2 46841 . 2 (𝜑 → dom 𝐺 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
16 nfcv 2891 . . 3 𝑚𝑆
17 nfcv 2891 . . 3 𝑚
18 nnct 13946 . . . 4 ℕ ≼ ω
1918a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
20 nfv 1914 . . . . 5 𝑛 𝑚 ∈ ℕ
211, 20nfan 1899 . . . 4 𝑛(𝜑𝑚 ∈ ℕ)
22 nfcv 2891 . . . 4 𝑛𝑆
23 nfcv 2891 . . . 4 𝑛𝑍
245adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ SAlg)
25 smfsupdmmbllem.6 . . . . . 6 𝑍 = (ℤ𝑀)
2625uzct 45057 . . . . 5 𝑍 ≼ ω
2726a1i 11 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑍 ≼ ω)
28 smfsupdmmbllem.5 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2928, 25uzn0d 45421 . . . . 5 (𝜑𝑍 ≠ ∅)
3029adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑍 ≠ ∅)
3124adantr 480 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑆 ∈ SAlg)
32 smfsupdmmbllem.9 . . . . . . 7 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
3332adantlr 715 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
3431, 33salrestss 46359 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝑆t dom (𝐹𝑛)) ⊆ 𝑆)
35 nfv 1914 . . . . . . . . . 10 𝑚 𝑛𝑍
363, 35nfan 1899 . . . . . . . . 9 𝑚(𝜑𝑛𝑍)
37 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑛
384, 37nffv 6868 . . . . . . . . . . 11 𝑥(𝐹𝑛)
398adantlr 715 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
40 nnxr 45273 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ*)
4140ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ ℝ*)
4238, 31, 39, 9, 41smfpimltxr 46745 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ (𝑆t dom (𝐹𝑛)))
4342an32s 652 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ (𝑆t dom (𝐹𝑛)))
4436, 43fmptd2f 45229 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆t dom (𝐹𝑛)))
45 simpr 484 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑛𝑍)
46 nnex 12192 . . . . . . . . . . 11 ℕ ∈ V
4746mptex 7197 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V
4814fvmpt2 6979 . . . . . . . . . 10 ((𝑛𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
4945, 47, 48sylancl 586 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
5049feq1d 6670 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)) ↔ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆t dom (𝐹𝑛))))
5144, 50mpbird 257 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)))
5251adantlr 715 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)))
53 simplr 768 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
5452, 53ffvelcdmd 7057 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) ∈ (𝑆t dom (𝐹𝑛)))
5534, 54sseldd 3947 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) ∈ 𝑆)
5621, 22, 23, 24, 27, 30, 55saliinclf 46324 . . 3 ((𝜑𝑚 ∈ ℕ) → 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∈ 𝑆)
573, 16, 17, 5, 19, 56saliunclf 46320 . 2 (𝜑 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∈ 𝑆)
5815, 57eqeltrd 2828 1 (𝜑 → dom 𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  c0 4296   ciun 4955   ciin 4956   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  ωcom 7842  cdom 8916  supcsup 9391  cr 11067  *cxr 11207   < clt 11208  cle 11209  cn 12186  cz 12529  cuz 12793  t crest 17383  SAlgcsalg 46306  SMblFncsmblfn 46693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-ioo 13310  df-ico 13312  df-rest 17385  df-salg 46307  df-smblfn 46694
This theorem is referenced by:  smfsupdmmbl  46843
  Copyright terms: Public domain W3C validator