Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupdmmbllem Structured version   Visualization version   GIF version

Theorem smfsupdmmbllem 46815
Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
smfsupdmmbllem.1 𝑛𝜑
smfsupdmmbllem.2 𝑥𝜑
smfsupdmmbllem.3 𝑚𝜑
smfsupdmmbllem.4 𝑥𝐹
smfsupdmmbllem.5 (𝜑𝑀 ∈ ℤ)
smfsupdmmbllem.6 𝑍 = (ℤ𝑀)
smfsupdmmbllem.7 (𝜑𝑆 ∈ SAlg)
smfsupdmmbllem.8 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsupdmmbllem.9 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
smfsupdmmbllem.10 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsupdmmbllem.11 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
smfsupdmmbllem.12 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsupdmmbllem (𝜑 → dom 𝐺𝑆)
Distinct variable groups:   𝐷,𝑚   𝑚,𝐹,𝑦   𝑦,𝐻   𝑆,𝑚,𝑛   𝑚,𝑍,𝑛,𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑦,𝑚,𝑛)

Proof of Theorem smfsupdmmbllem
StepHypRef Expression
1 smfsupdmmbllem.1 . . 3 𝑛𝜑
2 smfsupdmmbllem.2 . . 3 𝑥𝜑
3 smfsupdmmbllem.3 . . 3 𝑚𝜑
4 smfsupdmmbllem.4 . . 3 𝑥𝐹
5 smfsupdmmbllem.7 . . . . . 6 (𝜑𝑆 ∈ SAlg)
65adantr 480 . . . . 5 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
7 smfsupdmmbllem.8 . . . . . 6 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
87ffvelcdmda 7038 . . . . 5 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
9 eqid 2729 . . . . 5 dom (𝐹𝑛) = dom (𝐹𝑛)
106, 8, 9smff 46703 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
1110frexr 45354 . . 3 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
12 smfsupdmmbllem.10 . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
13 smfsupdmmbllem.12 . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
14 smfsupdmmbllem.11 . . 3 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
151, 2, 3, 4, 11, 12, 13, 14fsupdm2 46814 . 2 (𝜑 → dom 𝐺 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
16 nfcv 2891 . . 3 𝑚𝑆
17 nfcv 2891 . . 3 𝑚
18 nnct 13922 . . . 4 ℕ ≼ ω
1918a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
20 nfv 1914 . . . . 5 𝑛 𝑚 ∈ ℕ
211, 20nfan 1899 . . . 4 𝑛(𝜑𝑚 ∈ ℕ)
22 nfcv 2891 . . . 4 𝑛𝑆
23 nfcv 2891 . . . 4 𝑛𝑍
245adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ SAlg)
25 smfsupdmmbllem.6 . . . . . 6 𝑍 = (ℤ𝑀)
2625uzct 45030 . . . . 5 𝑍 ≼ ω
2726a1i 11 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑍 ≼ ω)
28 smfsupdmmbllem.5 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2928, 25uzn0d 45394 . . . . 5 (𝜑𝑍 ≠ ∅)
3029adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → 𝑍 ≠ ∅)
3124adantr 480 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑆 ∈ SAlg)
32 smfsupdmmbllem.9 . . . . . . 7 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
3332adantlr 715 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
3431, 33salrestss 46332 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝑆t dom (𝐹𝑛)) ⊆ 𝑆)
35 nfv 1914 . . . . . . . . . 10 𝑚 𝑛𝑍
363, 35nfan 1899 . . . . . . . . 9 𝑚(𝜑𝑛𝑍)
37 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑛
384, 37nffv 6850 . . . . . . . . . . 11 𝑥(𝐹𝑛)
398adantlr 715 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
40 nnxr 45246 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ*)
4140ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ ℝ*)
4238, 31, 39, 9, 41smfpimltxr 46718 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ (𝑆t dom (𝐹𝑛)))
4342an32s 652 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ (𝑆t dom (𝐹𝑛)))
4436, 43fmptd2f 45202 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆t dom (𝐹𝑛)))
45 simpr 484 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑛𝑍)
46 nnex 12168 . . . . . . . . . . 11 ℕ ∈ V
4746mptex 7179 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V
4814fvmpt2 6961 . . . . . . . . . 10 ((𝑛𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
4945, 47, 48sylancl 586 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
5049feq1d 6652 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)) ↔ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆t dom (𝐹𝑛))))
5144, 50mpbird 257 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)))
5251adantlr 715 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → (𝐻𝑛):ℕ⟶(𝑆t dom (𝐹𝑛)))
53 simplr 768 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
5452, 53ffvelcdmd 7039 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) ∈ (𝑆t dom (𝐹𝑛)))
5534, 54sseldd 3944 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) ∈ 𝑆)
5621, 22, 23, 24, 27, 30, 55saliinclf 46297 . . 3 ((𝜑𝑚 ∈ ℕ) → 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∈ 𝑆)
573, 16, 17, 5, 19, 56saliunclf 46293 . 2 (𝜑 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∈ 𝑆)
5815, 57eqeltrd 2828 1 (𝜑 → dom 𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  c0 4292   ciun 4951   ciin 4952   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  ωcom 7822  cdom 8893  supcsup 9367  cr 11043  *cxr 11183   < clt 11184  cle 11185  cn 12162  cz 12505  cuz 12769  t crest 17359  SAlgcsalg 46279  SMblFncsmblfn 46666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-ioo 13286  df-ico 13288  df-rest 17361  df-salg 46280  df-smblfn 46667
This theorem is referenced by:  smfsupdmmbl  46816
  Copyright terms: Public domain W3C validator