| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsupdmmbllem | Structured version Visualization version GIF version | ||
| Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| smfsupdmmbllem.1 | ⊢ Ⅎ𝑛𝜑 |
| smfsupdmmbllem.2 | ⊢ Ⅎ𝑥𝜑 |
| smfsupdmmbllem.3 | ⊢ Ⅎ𝑚𝜑 |
| smfsupdmmbllem.4 | ⊢ Ⅎ𝑥𝐹 |
| smfsupdmmbllem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| smfsupdmmbllem.6 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| smfsupdmmbllem.7 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfsupdmmbllem.8 | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
| smfsupdmmbllem.9 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
| smfsupdmmbllem.10 | ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} |
| smfsupdmmbllem.11 | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
| smfsupdmmbllem.12 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
| Ref | Expression |
|---|---|
| smfsupdmmbllem | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfsupdmmbllem.1 | . . 3 ⊢ Ⅎ𝑛𝜑 | |
| 2 | smfsupdmmbllem.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | smfsupdmmbllem.3 | . . 3 ⊢ Ⅎ𝑚𝜑 | |
| 4 | smfsupdmmbllem.4 | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 5 | smfsupdmmbllem.7 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 7 | smfsupdmmbllem.8 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
| 8 | 7 | ffvelcdmda 7038 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
| 9 | eqid 2729 | . . . . 5 ⊢ dom (𝐹‘𝑛) = dom (𝐹‘𝑛) | |
| 10 | 6, 8, 9 | smff 46703 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
| 11 | 10 | frexr 45354 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ*) |
| 12 | smfsupdmmbllem.10 | . . 3 ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} | |
| 13 | smfsupdmmbllem.12 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | |
| 14 | smfsupdmmbllem.11 | . . 3 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) | |
| 15 | 1, 2, 3, 4, 11, 12, 13, 14 | fsupdm2 46814 | . 2 ⊢ (𝜑 → dom 𝐺 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚)) |
| 16 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑚𝑆 | |
| 17 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑚ℕ | |
| 18 | nnct 13922 | . . . 4 ⊢ ℕ ≼ ω | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
| 20 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑛 𝑚 ∈ ℕ | |
| 21 | 1, 20 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑚 ∈ ℕ) |
| 22 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑛𝑆 | |
| 23 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑛𝑍 | |
| 24 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑆 ∈ SAlg) |
| 25 | smfsupdmmbllem.6 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 26 | 25 | uzct 45030 | . . . . 5 ⊢ 𝑍 ≼ ω |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≼ ω) |
| 28 | smfsupdmmbllem.5 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 29 | 28, 25 | uzn0d 45394 | . . . . 5 ⊢ (𝜑 → 𝑍 ≠ ∅) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑍 ≠ ∅) |
| 31 | 24 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 32 | smfsupdmmbllem.9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) | |
| 33 | 32 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
| 34 | 31, 33 | salrestss 46332 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝑆 ↾t dom (𝐹‘𝑛)) ⊆ 𝑆) |
| 35 | nfv 1914 | . . . . . . . . . 10 ⊢ Ⅎ𝑚 𝑛 ∈ 𝑍 | |
| 36 | 3, 35 | nfan 1899 | . . . . . . . . 9 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
| 37 | nfcv 2891 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑛 | |
| 38 | 4, 37 | nffv 6850 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝐹‘𝑛) |
| 39 | 8 | adantlr 715 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
| 40 | nnxr 45246 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ*) | |
| 41 | 40 | ad2antlr 727 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑚 ∈ ℝ*) |
| 42 | 38, 31, 39, 9, 41 | smfpimltxr 46718 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 43 | 42 | an32s 652 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚} ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 44 | 36, 43 | fmptd2f 45202 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 45 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
| 46 | nnex 12168 | . . . . . . . . . . 11 ⊢ ℕ ∈ V | |
| 47 | 46 | mptex 7179 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}) ∈ V |
| 48 | 14 | fvmpt2 6961 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ 𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}) ∈ V) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
| 49 | 45, 47, 48 | sylancl 586 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) |
| 50 | 49 | feq1d 6652 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)) ↔ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚}):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛)))) |
| 51 | 44, 50 | mpbird 257 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 52 | 51 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛):ℕ⟶(𝑆 ↾t dom (𝐹‘𝑛))) |
| 53 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → 𝑚 ∈ ℕ) | |
| 54 | 52, 53 | ffvelcdmd 7039 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ (𝑆 ↾t dom (𝐹‘𝑛))) |
| 55 | 34, 54 | sseldd 3944 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 56 | 21, 22, 23, 24, 27, 30, 55 | saliinclf 46297 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 57 | 3, 16, 17, 5, 19, 56 | saliunclf 46293 | . 2 ⊢ (𝜑 → ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚) ∈ 𝑆) |
| 58 | 15, 57 | eqeltrd 2828 | 1 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3402 Vcvv 3444 ∅c0 4292 ∪ ciun 4951 ∩ ciin 4952 class class class wbr 5102 ↦ cmpt 5183 dom cdm 5631 ran crn 5632 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ωcom 7822 ≼ cdom 8893 supcsup 9367 ℝcr 11043 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 ℕcn 12162 ℤcz 12505 ℤ≥cuz 12769 ↾t crest 17359 SAlgcsalg 46279 SMblFncsmblfn 46666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-ioo 13286 df-ico 13288 df-rest 17361 df-salg 46280 df-smblfn 46667 |
| This theorem is referenced by: smfsupdmmbl 46816 |
| Copyright terms: Public domain | W3C validator |