Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsmf Structured version   Visualization version   GIF version

Theorem incsmf 46724
Description: A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
incsmf.a (𝜑𝐴 ⊆ ℝ)
incsmf.f (𝜑𝐹:𝐴⟶ℝ)
incsmf.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
incsmf.j 𝐽 = (topGen‘ran (,))
incsmf.b 𝐵 = (SalGen‘𝐽)
Assertion
Ref Expression
incsmf (𝜑𝐹 ∈ (SMblFn‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem incsmf
Dummy variables 𝑏 𝑤 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑎𝜑
2 incsmf.j . . . . 5 𝐽 = (topGen‘ran (,))
3 retop 24665 . . . . 5 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2824 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 incsmf.b . . 3 𝐵 = (SalGen‘𝐽)
75, 6salgencld 46331 . 2 (𝜑𝐵 ∈ SAlg)
8 incsmf.a . . 3 (𝜑𝐴 ⊆ ℝ)
95, 6unisalgen2 46336 . . . 4 (𝜑 𝐵 = 𝐽)
102unieqi 4873 . . . . 5 𝐽 = (topGen‘ran (,))
1110a1i 11 . . . 4 (𝜑 𝐽 = (topGen‘ran (,)))
12 uniretop 24666 . . . . . 6 ℝ = (topGen‘ran (,))
1312eqcomi 2738 . . . . 5 (topGen‘ran (,)) = ℝ
1413a1i 11 . . . 4 (𝜑 (topGen‘ran (,)) = ℝ)
159, 11, 143eqtrrd 2769 . . 3 (𝜑 → ℝ = 𝐵)
168, 15sseqtrd 3974 . 2 (𝜑𝐴 𝐵)
17 incsmf.f . 2 (𝜑𝐹:𝐴⟶ℝ)
18 nfv 1914 . . . 4 𝑤(𝜑𝑎 ∈ ℝ)
19 nfv 1914 . . . 4 𝑧(𝜑𝑎 ∈ ℝ)
208adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ)
2117frexr 45365 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2221adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
23 incsmf.i . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
24 breq1 5098 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
25 fveq2 6826 . . . . . . . . 9 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
2625breq1d 5105 . . . . . . . 8 (𝑥 = 𝑤 → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝐹𝑤) ≤ (𝐹𝑦)))
2724, 26imbi12d 344 . . . . . . 7 (𝑥 = 𝑤 → ((𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ (𝑤𝑦 → (𝐹𝑤) ≤ (𝐹𝑦))))
28 breq2 5099 . . . . . . . 8 (𝑦 = 𝑧 → (𝑤𝑦𝑤𝑧))
29 fveq2 6826 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
3029breq2d 5107 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐹𝑤) ≤ (𝐹𝑦) ↔ (𝐹𝑤) ≤ (𝐹𝑧)))
3128, 30imbi12d 344 . . . . . . 7 (𝑦 = 𝑧 → ((𝑤𝑦 → (𝐹𝑤) ≤ (𝐹𝑦)) ↔ (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧))))
3227, 31cbvral2vw 3211 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
3323, 32sylib 218 . . . . 5 (𝜑 → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
3433adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
35 rexr 11180 . . . . 5 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3635adantl 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
3725breq1d 5105 . . . . 5 (𝑥 = 𝑤 → ((𝐹𝑥) < 𝑎 ↔ (𝐹𝑤) < 𝑎))
3837cbvrabv 3407 . . . 4 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = {𝑤𝐴 ∣ (𝐹𝑤) < 𝑎}
39 eqid 2729 . . . 4 sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ) = sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )
40 eqid 2729 . . . 4 (-∞(,)sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )) = (-∞(,)sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ))
41 eqid 2729 . . . 4 (-∞(,]sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )) = (-∞(,]sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ))
4218, 19, 20, 22, 34, 2, 6, 36, 38, 39, 40, 41incsmflem 46723 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴))
43 reex 11119 . . . . . . 7 ℝ ∈ V
4443a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4544, 8ssexd 5266 . . . . 5 (𝜑𝐴 ∈ V)
46 elrest 17349 . . . . 5 ((𝐵 ∈ SAlg ∧ 𝐴 ∈ V) → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
477, 45, 46syl2anc 584 . . . 4 (𝜑 → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
4847adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
4942, 48mpbird 257 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴))
501, 7, 16, 17, 49issmfd 46717 1 (𝜑𝐹 ∈ (SMblFn‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cin 3904  wss 3905   cuni 4861   class class class wbr 5095  ran crn 5624  wf 6482  cfv 6486  (class class class)co 7353  supcsup 9349  cr 11027  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169  (,)cioo 13266  (,]cioc 13267  t crest 17342  topGenctg 17359  Topctop 22796  SAlgcsalg 46290  SalGencsalgen 46294  SMblFncsmblfn 46677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-ioo 13270  df-ioc 13271  df-ico 13272  df-fl 13714  df-rest 17344  df-topgen 17365  df-top 22797  df-bases 22849  df-salg 46291  df-salgen 46295  df-smblfn 46678
This theorem is referenced by:  smfid  46734
  Copyright terms: Public domain W3C validator