![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > incsmf | Structured version Visualization version GIF version |
Description: A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
incsmf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
incsmf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
incsmf.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
incsmf.j | ⊢ 𝐽 = (topGen‘ran (,)) |
incsmf.b | ⊢ 𝐵 = (SalGen‘𝐽) |
Ref | Expression |
---|---|
incsmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | incsmf.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | retop 24125 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
4 | 2, 3 | eqeltri 2834 | . . . 4 ⊢ 𝐽 ∈ Top |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
6 | incsmf.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐽) | |
7 | 5, 6 | salgencld 44580 | . 2 ⊢ (𝜑 → 𝐵 ∈ SAlg) |
8 | incsmf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
9 | 5, 6 | unisalgen2 44585 | . . . 4 ⊢ (𝜑 → ∪ 𝐵 = ∪ 𝐽) |
10 | 2 | unieqi 4878 | . . . . 5 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝐽 = ∪ (topGen‘ran (,))) |
12 | uniretop 24126 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
13 | 12 | eqcomi 2745 | . . . . 5 ⊢ ∪ (topGen‘ran (,)) = ℝ |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ (topGen‘ran (,)) = ℝ) |
15 | 9, 11, 14 | 3eqtrrd 2781 | . . 3 ⊢ (𝜑 → ℝ = ∪ 𝐵) |
16 | 8, 15 | sseqtrd 3984 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐵) |
17 | incsmf.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
18 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑤(𝜑 ∧ 𝑎 ∈ ℝ) | |
19 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑧(𝜑 ∧ 𝑎 ∈ ℝ) | |
20 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ) |
21 | 17 | frexr 43609 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
22 | 21 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*) |
23 | incsmf.i | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) | |
24 | breq1 5108 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) | |
25 | fveq2 6842 | . . . . . . . . 9 ⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) | |
26 | 25 | breq1d 5115 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ≤ (𝐹‘𝑦))) |
27 | 24, 26 | imbi12d 344 | . . . . . . 7 ⊢ (𝑥 = 𝑤 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ (𝑤 ≤ 𝑦 → (𝐹‘𝑤) ≤ (𝐹‘𝑦)))) |
28 | breq2 5109 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧)) | |
29 | fveq2 6842 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) | |
30 | 29 | breq2d 5117 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ((𝐹‘𝑤) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
31 | 28, 30 | imbi12d 344 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((𝑤 ≤ 𝑦 → (𝐹‘𝑤) ≤ (𝐹‘𝑦)) ↔ (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) |
32 | 27, 31 | cbvral2vw 3227 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
33 | 23, 32 | sylib 217 | . . . . 5 ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
34 | 33 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
35 | rexr 11201 | . . . . 5 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
36 | 35 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
37 | 25 | breq1d 5115 | . . . . 5 ⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) < 𝑎 ↔ (𝐹‘𝑤) < 𝑎)) |
38 | 37 | cbvrabv 3417 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = {𝑤 ∈ 𝐴 ∣ (𝐹‘𝑤) < 𝑎} |
39 | eqid 2736 | . . . 4 ⊢ sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < ) = sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < ) | |
40 | eqid 2736 | . . . 4 ⊢ (-∞(,)sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) = (-∞(,)sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) | |
41 | eqid 2736 | . . . 4 ⊢ (-∞(,]sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) = (-∞(,]sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) | |
42 | 18, 19, 20, 22, 34, 2, 6, 36, 38, 39, 40, 41 | incsmflem 44972 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴)) |
43 | reex 11142 | . . . . . . 7 ⊢ ℝ ∈ V | |
44 | 43 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
45 | 44, 8 | ssexd 5281 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
46 | elrest 17309 | . . . . 5 ⊢ ((𝐵 ∈ SAlg ∧ 𝐴 ∈ V) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) | |
47 | 7, 45, 46 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) |
48 | 47 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) |
49 | 42, 48 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴)) |
50 | 1, 7, 16, 17, 49 | issmfd 44966 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 {crab 3407 Vcvv 3445 ∩ cin 3909 ⊆ wss 3910 ∪ cuni 4865 class class class wbr 5105 ran crn 5634 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 supcsup 9376 ℝcr 11050 -∞cmnf 11187 ℝ*cxr 11188 < clt 11189 ≤ cle 11190 (,)cioo 13264 (,]cioc 13265 ↾t crest 17302 topGenctg 17319 Topctop 22242 SAlgcsalg 44539 SalGencsalgen 44543 SMblFncsmblfn 44926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-sup 9378 df-inf 9379 df-card 9875 df-acn 9878 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-q 12874 df-rp 12916 df-ioo 13268 df-ioc 13269 df-ico 13270 df-fl 13697 df-rest 17304 df-topgen 17325 df-top 22243 df-bases 22296 df-salg 44540 df-salgen 44544 df-smblfn 44927 |
This theorem is referenced by: smfid 44983 |
Copyright terms: Public domain | W3C validator |