![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > incsmf | Structured version Visualization version GIF version |
Description: A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
incsmf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
incsmf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
incsmf.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
incsmf.j | ⊢ 𝐽 = (topGen‘ran (,)) |
incsmf.b | ⊢ 𝐵 = (SalGen‘𝐽) |
Ref | Expression |
---|---|
incsmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1896 | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | incsmf.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | retop 23057 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
4 | 2, 3 | eqeltri 2881 | . . . 4 ⊢ 𝐽 ∈ Top |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
6 | incsmf.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐽) | |
7 | 5, 6 | salgencld 42196 | . 2 ⊢ (𝜑 → 𝐵 ∈ SAlg) |
8 | incsmf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
9 | 5, 6 | unisalgen2 42201 | . . . 4 ⊢ (𝜑 → ∪ 𝐵 = ∪ 𝐽) |
10 | 2 | unieqi 4760 | . . . . 5 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝐽 = ∪ (topGen‘ran (,))) |
12 | uniretop 23058 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
13 | 12 | eqcomi 2806 | . . . . 5 ⊢ ∪ (topGen‘ran (,)) = ℝ |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ (topGen‘ran (,)) = ℝ) |
15 | 9, 11, 14 | 3eqtrrd 2838 | . . 3 ⊢ (𝜑 → ℝ = ∪ 𝐵) |
16 | 8, 15 | sseqtrd 3934 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐵) |
17 | incsmf.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
18 | nfv 1896 | . . . 4 ⊢ Ⅎ𝑤(𝜑 ∧ 𝑎 ∈ ℝ) | |
19 | nfv 1896 | . . . 4 ⊢ Ⅎ𝑧(𝜑 ∧ 𝑎 ∈ ℝ) | |
20 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ) |
21 | 17 | frexr 41217 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
22 | 21 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*) |
23 | incsmf.i | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) | |
24 | breq1 4971 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) | |
25 | fveq2 6545 | . . . . . . . . 9 ⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) | |
26 | 25 | breq1d 4978 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ≤ (𝐹‘𝑦))) |
27 | 24, 26 | imbi12d 346 | . . . . . . 7 ⊢ (𝑥 = 𝑤 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ (𝑤 ≤ 𝑦 → (𝐹‘𝑤) ≤ (𝐹‘𝑦)))) |
28 | breq2 4972 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧)) | |
29 | fveq2 6545 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) | |
30 | 29 | breq2d 4980 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ((𝐹‘𝑤) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
31 | 28, 30 | imbi12d 346 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((𝑤 ≤ 𝑦 → (𝐹‘𝑤) ≤ (𝐹‘𝑦)) ↔ (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) |
32 | 27, 31 | cbvral2v 3414 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
33 | 23, 32 | sylib 219 | . . . . 5 ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
34 | 33 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
35 | rexr 10540 | . . . . 5 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
36 | 35 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
37 | 25 | breq1d 4978 | . . . . 5 ⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) < 𝑎 ↔ (𝐹‘𝑤) < 𝑎)) |
38 | 37 | cbvrabv 3437 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = {𝑤 ∈ 𝐴 ∣ (𝐹‘𝑤) < 𝑎} |
39 | eqid 2797 | . . . 4 ⊢ sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < ) = sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < ) | |
40 | eqid 2797 | . . . 4 ⊢ (-∞(,)sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) = (-∞(,)sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) | |
41 | eqid 2797 | . . . 4 ⊢ (-∞(,]sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) = (-∞(,]sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) | |
42 | 18, 19, 20, 22, 34, 2, 6, 36, 38, 39, 40, 41 | incsmflem 42582 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴)) |
43 | reex 10481 | . . . . . . 7 ⊢ ℝ ∈ V | |
44 | 43 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
45 | 44, 8 | ssexd 5126 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
46 | elrest 16534 | . . . . 5 ⊢ ((𝐵 ∈ SAlg ∧ 𝐴 ∈ V) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) | |
47 | 7, 45, 46 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) |
48 | 47 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) |
49 | 42, 48 | mpbird 258 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴)) |
50 | 1, 7, 16, 17, 49 | issmfd 42576 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∀wral 3107 ∃wrex 3108 {crab 3111 Vcvv 3440 ∩ cin 3864 ⊆ wss 3865 ∪ cuni 4751 class class class wbr 4968 ran crn 5451 ⟶wf 6228 ‘cfv 6232 (class class class)co 7023 supcsup 8757 ℝcr 10389 -∞cmnf 10526 ℝ*cxr 10527 < clt 10528 ≤ cle 10529 (,)cioo 12592 (,]cioc 12593 ↾t crest 16527 topGenctg 16544 Topctop 21189 SAlgcsalg 42157 SalGencsalgen 42161 SMblFncsmblfn 42541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-inf2 8957 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-map 8265 df-pm 8266 df-en 8365 df-dom 8366 df-sdom 8367 df-sup 8759 df-inf 8760 df-card 9221 df-acn 9224 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-n0 11752 df-z 11836 df-uz 12098 df-q 12202 df-rp 12244 df-ioo 12596 df-ioc 12597 df-ico 12598 df-fl 13016 df-rest 16529 df-topgen 16550 df-top 21190 df-bases 21242 df-salg 42158 df-salgen 42162 df-smblfn 42542 |
This theorem is referenced by: smfid 42593 |
Copyright terms: Public domain | W3C validator |