Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > incsmf | Structured version Visualization version GIF version |
Description: A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
incsmf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
incsmf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
incsmf.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
incsmf.j | ⊢ 𝐽 = (topGen‘ran (,)) |
incsmf.b | ⊢ 𝐵 = (SalGen‘𝐽) |
Ref | Expression |
---|---|
incsmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | incsmf.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | retop 23925 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
4 | 2, 3 | eqeltri 2835 | . . . 4 ⊢ 𝐽 ∈ Top |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
6 | incsmf.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐽) | |
7 | 5, 6 | salgencld 43888 | . 2 ⊢ (𝜑 → 𝐵 ∈ SAlg) |
8 | incsmf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
9 | 5, 6 | unisalgen2 43893 | . . . 4 ⊢ (𝜑 → ∪ 𝐵 = ∪ 𝐽) |
10 | 2 | unieqi 4852 | . . . . 5 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝐽 = ∪ (topGen‘ran (,))) |
12 | uniretop 23926 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
13 | 12 | eqcomi 2747 | . . . . 5 ⊢ ∪ (topGen‘ran (,)) = ℝ |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ (topGen‘ran (,)) = ℝ) |
15 | 9, 11, 14 | 3eqtrrd 2783 | . . 3 ⊢ (𝜑 → ℝ = ∪ 𝐵) |
16 | 8, 15 | sseqtrd 3961 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐵) |
17 | incsmf.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
18 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑤(𝜑 ∧ 𝑎 ∈ ℝ) | |
19 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑧(𝜑 ∧ 𝑎 ∈ ℝ) | |
20 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ) |
21 | 17 | frexr 42924 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
22 | 21 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*) |
23 | incsmf.i | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) | |
24 | breq1 5077 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) | |
25 | fveq2 6774 | . . . . . . . . 9 ⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) | |
26 | 25 | breq1d 5084 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ≤ (𝐹‘𝑦))) |
27 | 24, 26 | imbi12d 345 | . . . . . . 7 ⊢ (𝑥 = 𝑤 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ (𝑤 ≤ 𝑦 → (𝐹‘𝑤) ≤ (𝐹‘𝑦)))) |
28 | breq2 5078 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧)) | |
29 | fveq2 6774 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) | |
30 | 29 | breq2d 5086 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ((𝐹‘𝑤) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
31 | 28, 30 | imbi12d 345 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((𝑤 ≤ 𝑦 → (𝐹‘𝑤) ≤ (𝐹‘𝑦)) ↔ (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) |
32 | 27, 31 | cbvral2vw 3396 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
33 | 23, 32 | sylib 217 | . . . . 5 ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
34 | 33 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
35 | rexr 11021 | . . . . 5 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
36 | 35 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
37 | 25 | breq1d 5084 | . . . . 5 ⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) < 𝑎 ↔ (𝐹‘𝑤) < 𝑎)) |
38 | 37 | cbvrabv 3426 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = {𝑤 ∈ 𝐴 ∣ (𝐹‘𝑤) < 𝑎} |
39 | eqid 2738 | . . . 4 ⊢ sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < ) = sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < ) | |
40 | eqid 2738 | . . . 4 ⊢ (-∞(,)sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) = (-∞(,)sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) | |
41 | eqid 2738 | . . . 4 ⊢ (-∞(,]sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) = (-∞(,]sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) | |
42 | 18, 19, 20, 22, 34, 2, 6, 36, 38, 39, 40, 41 | incsmflem 44277 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴)) |
43 | reex 10962 | . . . . . . 7 ⊢ ℝ ∈ V | |
44 | 43 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
45 | 44, 8 | ssexd 5248 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
46 | elrest 17138 | . . . . 5 ⊢ ((𝐵 ∈ SAlg ∧ 𝐴 ∈ V) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) | |
47 | 7, 45, 46 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) |
48 | 47 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) |
49 | 42, 48 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴)) |
50 | 1, 7, 16, 17, 49 | issmfd 44271 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 {crab 3068 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 supcsup 9199 ℝcr 10870 -∞cmnf 11007 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 (,)cioo 13079 (,]cioc 13080 ↾t crest 17131 topGenctg 17148 Topctop 22042 SAlgcsalg 43849 SalGencsalgen 43853 SMblFncsmblfn 44233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-ioo 13083 df-ioc 13084 df-ico 13085 df-fl 13512 df-rest 17133 df-topgen 17154 df-top 22043 df-bases 22096 df-salg 43850 df-salgen 43854 df-smblfn 44234 |
This theorem is referenced by: smfid 44288 |
Copyright terms: Public domain | W3C validator |