Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsmf Structured version   Visualization version   GIF version

Theorem incsmf 44165
Description: A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
incsmf.a (𝜑𝐴 ⊆ ℝ)
incsmf.f (𝜑𝐹:𝐴⟶ℝ)
incsmf.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
incsmf.j 𝐽 = (topGen‘ran (,))
incsmf.b 𝐵 = (SalGen‘𝐽)
Assertion
Ref Expression
incsmf (𝜑𝐹 ∈ (SMblFn‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem incsmf
Dummy variables 𝑏 𝑤 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . 2 𝑎𝜑
2 incsmf.j . . . . 5 𝐽 = (topGen‘ran (,))
3 retop 23831 . . . . 5 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2835 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 incsmf.b . . 3 𝐵 = (SalGen‘𝐽)
75, 6salgencld 43778 . 2 (𝜑𝐵 ∈ SAlg)
8 incsmf.a . . 3 (𝜑𝐴 ⊆ ℝ)
95, 6unisalgen2 43783 . . . 4 (𝜑 𝐵 = 𝐽)
102unieqi 4849 . . . . 5 𝐽 = (topGen‘ran (,))
1110a1i 11 . . . 4 (𝜑 𝐽 = (topGen‘ran (,)))
12 uniretop 23832 . . . . . 6 ℝ = (topGen‘ran (,))
1312eqcomi 2747 . . . . 5 (topGen‘ran (,)) = ℝ
1413a1i 11 . . . 4 (𝜑 (topGen‘ran (,)) = ℝ)
159, 11, 143eqtrrd 2783 . . 3 (𝜑 → ℝ = 𝐵)
168, 15sseqtrd 3957 . 2 (𝜑𝐴 𝐵)
17 incsmf.f . 2 (𝜑𝐹:𝐴⟶ℝ)
18 nfv 1918 . . . 4 𝑤(𝜑𝑎 ∈ ℝ)
19 nfv 1918 . . . 4 𝑧(𝜑𝑎 ∈ ℝ)
208adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ)
2117frexr 42814 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2221adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
23 incsmf.i . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
24 breq1 5073 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
25 fveq2 6756 . . . . . . . . 9 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
2625breq1d 5080 . . . . . . . 8 (𝑥 = 𝑤 → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝐹𝑤) ≤ (𝐹𝑦)))
2724, 26imbi12d 344 . . . . . . 7 (𝑥 = 𝑤 → ((𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ (𝑤𝑦 → (𝐹𝑤) ≤ (𝐹𝑦))))
28 breq2 5074 . . . . . . . 8 (𝑦 = 𝑧 → (𝑤𝑦𝑤𝑧))
29 fveq2 6756 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
3029breq2d 5082 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐹𝑤) ≤ (𝐹𝑦) ↔ (𝐹𝑤) ≤ (𝐹𝑧)))
3128, 30imbi12d 344 . . . . . . 7 (𝑦 = 𝑧 → ((𝑤𝑦 → (𝐹𝑤) ≤ (𝐹𝑦)) ↔ (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧))))
3227, 31cbvral2vw 3385 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
3323, 32sylib 217 . . . . 5 (𝜑 → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
3433adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
35 rexr 10952 . . . . 5 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3635adantl 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
3725breq1d 5080 . . . . 5 (𝑥 = 𝑤 → ((𝐹𝑥) < 𝑎 ↔ (𝐹𝑤) < 𝑎))
3837cbvrabv 3416 . . . 4 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = {𝑤𝐴 ∣ (𝐹𝑤) < 𝑎}
39 eqid 2738 . . . 4 sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ) = sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )
40 eqid 2738 . . . 4 (-∞(,)sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )) = (-∞(,)sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ))
41 eqid 2738 . . . 4 (-∞(,]sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )) = (-∞(,]sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ))
4218, 19, 20, 22, 34, 2, 6, 36, 38, 39, 40, 41incsmflem 44164 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴))
43 reex 10893 . . . . . . 7 ℝ ∈ V
4443a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4544, 8ssexd 5243 . . . . 5 (𝜑𝐴 ∈ V)
46 elrest 17055 . . . . 5 ((𝐵 ∈ SAlg ∧ 𝐴 ∈ V) → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
477, 45, 46syl2anc 583 . . . 4 (𝜑 → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
4847adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
4942, 48mpbird 256 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴))
501, 7, 16, 17, 49issmfd 44158 1 (𝜑𝐹 ∈ (SMblFn‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  wss 3883   cuni 4836   class class class wbr 5070  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cr 10801  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  (,)cioo 13008  (,]cioc 13009  t crest 17048  topGenctg 17065  Topctop 21950  SAlgcsalg 43739  SalGencsalgen 43743  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ioc 13013  df-ico 13014  df-fl 13440  df-rest 17050  df-topgen 17071  df-top 21951  df-bases 22004  df-salg 43740  df-salgen 43744  df-smblfn 44124
This theorem is referenced by:  smfid  44175
  Copyright terms: Public domain W3C validator