| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > incsmf | Structured version Visualization version GIF version | ||
| Description: A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| incsmf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| incsmf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| incsmf.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| incsmf.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| incsmf.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| Ref | Expression |
|---|---|
| incsmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | incsmf.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 3 | retop 24698 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
| 4 | 2, 3 | eqeltri 2830 | . . . 4 ⊢ 𝐽 ∈ Top |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 6 | incsmf.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 7 | 5, 6 | salgencld 46326 | . 2 ⊢ (𝜑 → 𝐵 ∈ SAlg) |
| 8 | incsmf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 9 | 5, 6 | unisalgen2 46331 | . . . 4 ⊢ (𝜑 → ∪ 𝐵 = ∪ 𝐽) |
| 10 | 2 | unieqi 4895 | . . . . 5 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝐽 = ∪ (topGen‘ran (,))) |
| 12 | uniretop 24699 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 13 | 12 | eqcomi 2744 | . . . . 5 ⊢ ∪ (topGen‘ran (,)) = ℝ |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ (topGen‘ran (,)) = ℝ) |
| 15 | 9, 11, 14 | 3eqtrrd 2775 | . . 3 ⊢ (𝜑 → ℝ = ∪ 𝐵) |
| 16 | 8, 15 | sseqtrd 3995 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐵) |
| 17 | incsmf.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 18 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤(𝜑 ∧ 𝑎 ∈ ℝ) | |
| 19 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧(𝜑 ∧ 𝑎 ∈ ℝ) | |
| 20 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ) |
| 21 | 17 | frexr 45360 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*) |
| 23 | incsmf.i | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) | |
| 24 | breq1 5122 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) | |
| 25 | fveq2 6875 | . . . . . . . . 9 ⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) | |
| 26 | 25 | breq1d 5129 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ≤ (𝐹‘𝑦))) |
| 27 | 24, 26 | imbi12d 344 | . . . . . . 7 ⊢ (𝑥 = 𝑤 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ (𝑤 ≤ 𝑦 → (𝐹‘𝑤) ≤ (𝐹‘𝑦)))) |
| 28 | breq2 5123 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧)) | |
| 29 | fveq2 6875 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) | |
| 30 | 29 | breq2d 5131 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ((𝐹‘𝑤) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
| 31 | 28, 30 | imbi12d 344 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((𝑤 ≤ 𝑦 → (𝐹‘𝑤) ≤ (𝐹‘𝑦)) ↔ (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) |
| 32 | 27, 31 | cbvral2vw 3224 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
| 33 | 23, 32 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
| 34 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
| 35 | rexr 11279 | . . . . 5 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 36 | 35 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
| 37 | 25 | breq1d 5129 | . . . . 5 ⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) < 𝑎 ↔ (𝐹‘𝑤) < 𝑎)) |
| 38 | 37 | cbvrabv 3426 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = {𝑤 ∈ 𝐴 ∣ (𝐹‘𝑤) < 𝑎} |
| 39 | eqid 2735 | . . . 4 ⊢ sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < ) = sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < ) | |
| 40 | eqid 2735 | . . . 4 ⊢ (-∞(,)sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) = (-∞(,)sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) | |
| 41 | eqid 2735 | . . . 4 ⊢ (-∞(,]sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) = (-∞(,]sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) | |
| 42 | 18, 19, 20, 22, 34, 2, 6, 36, 38, 39, 40, 41 | incsmflem 46718 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴)) |
| 43 | reex 11218 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 44 | 43 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
| 45 | 44, 8 | ssexd 5294 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 46 | elrest 17439 | . . . . 5 ⊢ ((𝐵 ∈ SAlg ∧ 𝐴 ∈ V) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) | |
| 47 | 7, 45, 46 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) |
| 48 | 47 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) |
| 49 | 42, 48 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴)) |
| 50 | 1, 7, 16, 17, 49 | issmfd 46712 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 {crab 3415 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ∪ cuni 4883 class class class wbr 5119 ran crn 5655 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 supcsup 9450 ℝcr 11126 -∞cmnf 11265 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 (,)cioo 13360 (,]cioc 13361 ↾t crest 17432 topGenctg 17449 Topctop 22829 SAlgcsalg 46285 SalGencsalgen 46289 SMblFncsmblfn 46672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-card 9951 df-acn 9954 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-ioo 13364 df-ioc 13365 df-ico 13366 df-fl 13807 df-rest 17434 df-topgen 17455 df-top 22830 df-bases 22882 df-salg 46286 df-salgen 46290 df-smblfn 46673 |
| This theorem is referenced by: smfid 46729 |
| Copyright terms: Public domain | W3C validator |