| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > incsmf | Structured version Visualization version GIF version | ||
| Description: A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| incsmf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| incsmf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| incsmf.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| incsmf.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| incsmf.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| Ref | Expression |
|---|---|
| incsmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | incsmf.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 3 | retop 24655 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
| 4 | 2, 3 | eqeltri 2825 | . . . 4 ⊢ 𝐽 ∈ Top |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 6 | incsmf.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 7 | 5, 6 | salgencld 46340 | . 2 ⊢ (𝜑 → 𝐵 ∈ SAlg) |
| 8 | incsmf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 9 | 5, 6 | unisalgen2 46345 | . . . 4 ⊢ (𝜑 → ∪ 𝐵 = ∪ 𝐽) |
| 10 | 2 | unieqi 4885 | . . . . 5 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝐽 = ∪ (topGen‘ran (,))) |
| 12 | uniretop 24656 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 13 | 12 | eqcomi 2739 | . . . . 5 ⊢ ∪ (topGen‘ran (,)) = ℝ |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ (topGen‘ran (,)) = ℝ) |
| 15 | 9, 11, 14 | 3eqtrrd 2770 | . . 3 ⊢ (𝜑 → ℝ = ∪ 𝐵) |
| 16 | 8, 15 | sseqtrd 3985 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐵) |
| 17 | incsmf.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 18 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤(𝜑 ∧ 𝑎 ∈ ℝ) | |
| 19 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧(𝜑 ∧ 𝑎 ∈ ℝ) | |
| 20 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ) |
| 21 | 17 | frexr 45374 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*) |
| 23 | incsmf.i | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) | |
| 24 | breq1 5112 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) | |
| 25 | fveq2 6860 | . . . . . . . . 9 ⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) | |
| 26 | 25 | breq1d 5119 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ≤ (𝐹‘𝑦))) |
| 27 | 24, 26 | imbi12d 344 | . . . . . . 7 ⊢ (𝑥 = 𝑤 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ (𝑤 ≤ 𝑦 → (𝐹‘𝑤) ≤ (𝐹‘𝑦)))) |
| 28 | breq2 5113 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧)) | |
| 29 | fveq2 6860 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) | |
| 30 | 29 | breq2d 5121 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ((𝐹‘𝑤) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
| 31 | 28, 30 | imbi12d 344 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((𝑤 ≤ 𝑦 → (𝐹‘𝑤) ≤ (𝐹‘𝑦)) ↔ (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) |
| 32 | 27, 31 | cbvral2vw 3220 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
| 33 | 23, 32 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
| 34 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∀𝑤 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑤 ≤ 𝑧 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
| 35 | rexr 11226 | . . . . 5 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 36 | 35 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
| 37 | 25 | breq1d 5119 | . . . . 5 ⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) < 𝑎 ↔ (𝐹‘𝑤) < 𝑎)) |
| 38 | 37 | cbvrabv 3419 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = {𝑤 ∈ 𝐴 ∣ (𝐹‘𝑤) < 𝑎} |
| 39 | eqid 2730 | . . . 4 ⊢ sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < ) = sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < ) | |
| 40 | eqid 2730 | . . . 4 ⊢ (-∞(,)sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) = (-∞(,)sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) | |
| 41 | eqid 2730 | . . . 4 ⊢ (-∞(,]sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) = (-∞(,]sup({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎}, ℝ*, < )) | |
| 42 | 18, 19, 20, 22, 34, 2, 6, 36, 38, 39, 40, 41 | incsmflem 46732 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴)) |
| 43 | reex 11165 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 44 | 43 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
| 45 | 44, 8 | ssexd 5281 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 46 | elrest 17396 | . . . . 5 ⊢ ((𝐵 ∈ SAlg ∧ 𝐴 ∈ V) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) | |
| 47 | 7, 45, 46 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) |
| 48 | 47 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑏 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (𝑏 ∩ 𝐴))) |
| 49 | 42, 48 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐵 ↾t 𝐴)) |
| 50 | 1, 7, 16, 17, 49 | issmfd 46726 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 Vcvv 3450 ∩ cin 3915 ⊆ wss 3916 ∪ cuni 4873 class class class wbr 5109 ran crn 5641 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 supcsup 9397 ℝcr 11073 -∞cmnf 11212 ℝ*cxr 11213 < clt 11214 ≤ cle 11215 (,)cioo 13312 (,]cioc 13313 ↾t crest 17389 topGenctg 17406 Topctop 22786 SAlgcsalg 46299 SalGencsalgen 46303 SMblFncsmblfn 46686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-card 9898 df-acn 9901 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-rp 12958 df-ioo 13316 df-ioc 13317 df-ico 13318 df-fl 13760 df-rest 17391 df-topgen 17412 df-top 22787 df-bases 22839 df-salg 46300 df-salgen 46304 df-smblfn 46687 |
| This theorem is referenced by: smfid 46743 |
| Copyright terms: Public domain | W3C validator |