Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsmf Structured version   Visualization version   GIF version

Theorem incsmf 44278
Description: A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
incsmf.a (𝜑𝐴 ⊆ ℝ)
incsmf.f (𝜑𝐹:𝐴⟶ℝ)
incsmf.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
incsmf.j 𝐽 = (topGen‘ran (,))
incsmf.b 𝐵 = (SalGen‘𝐽)
Assertion
Ref Expression
incsmf (𝜑𝐹 ∈ (SMblFn‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem incsmf
Dummy variables 𝑏 𝑤 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . 2 𝑎𝜑
2 incsmf.j . . . . 5 𝐽 = (topGen‘ran (,))
3 retop 23925 . . . . 5 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2835 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 incsmf.b . . 3 𝐵 = (SalGen‘𝐽)
75, 6salgencld 43888 . 2 (𝜑𝐵 ∈ SAlg)
8 incsmf.a . . 3 (𝜑𝐴 ⊆ ℝ)
95, 6unisalgen2 43893 . . . 4 (𝜑 𝐵 = 𝐽)
102unieqi 4852 . . . . 5 𝐽 = (topGen‘ran (,))
1110a1i 11 . . . 4 (𝜑 𝐽 = (topGen‘ran (,)))
12 uniretop 23926 . . . . . 6 ℝ = (topGen‘ran (,))
1312eqcomi 2747 . . . . 5 (topGen‘ran (,)) = ℝ
1413a1i 11 . . . 4 (𝜑 (topGen‘ran (,)) = ℝ)
159, 11, 143eqtrrd 2783 . . 3 (𝜑 → ℝ = 𝐵)
168, 15sseqtrd 3961 . 2 (𝜑𝐴 𝐵)
17 incsmf.f . 2 (𝜑𝐹:𝐴⟶ℝ)
18 nfv 1917 . . . 4 𝑤(𝜑𝑎 ∈ ℝ)
19 nfv 1917 . . . 4 𝑧(𝜑𝑎 ∈ ℝ)
208adantr 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ)
2117frexr 42924 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2221adantr 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
23 incsmf.i . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
24 breq1 5077 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
25 fveq2 6774 . . . . . . . . 9 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
2625breq1d 5084 . . . . . . . 8 (𝑥 = 𝑤 → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝐹𝑤) ≤ (𝐹𝑦)))
2724, 26imbi12d 345 . . . . . . 7 (𝑥 = 𝑤 → ((𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ (𝑤𝑦 → (𝐹𝑤) ≤ (𝐹𝑦))))
28 breq2 5078 . . . . . . . 8 (𝑦 = 𝑧 → (𝑤𝑦𝑤𝑧))
29 fveq2 6774 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
3029breq2d 5086 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐹𝑤) ≤ (𝐹𝑦) ↔ (𝐹𝑤) ≤ (𝐹𝑧)))
3128, 30imbi12d 345 . . . . . . 7 (𝑦 = 𝑧 → ((𝑤𝑦 → (𝐹𝑤) ≤ (𝐹𝑦)) ↔ (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧))))
3227, 31cbvral2vw 3396 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
3323, 32sylib 217 . . . . 5 (𝜑 → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
3433adantr 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
35 rexr 11021 . . . . 5 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3635adantl 482 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
3725breq1d 5084 . . . . 5 (𝑥 = 𝑤 → ((𝐹𝑥) < 𝑎 ↔ (𝐹𝑤) < 𝑎))
3837cbvrabv 3426 . . . 4 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = {𝑤𝐴 ∣ (𝐹𝑤) < 𝑎}
39 eqid 2738 . . . 4 sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ) = sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )
40 eqid 2738 . . . 4 (-∞(,)sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )) = (-∞(,)sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ))
41 eqid 2738 . . . 4 (-∞(,]sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )) = (-∞(,]sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ))
4218, 19, 20, 22, 34, 2, 6, 36, 38, 39, 40, 41incsmflem 44277 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴))
43 reex 10962 . . . . . . 7 ℝ ∈ V
4443a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4544, 8ssexd 5248 . . . . 5 (𝜑𝐴 ∈ V)
46 elrest 17138 . . . . 5 ((𝐵 ∈ SAlg ∧ 𝐴 ∈ V) → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
477, 45, 46syl2anc 584 . . . 4 (𝜑 → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
4847adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
4942, 48mpbird 256 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴))
501, 7, 16, 17, 49issmfd 44271 1 (𝜑𝐹 ∈ (SMblFn‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cin 3886  wss 3887   cuni 4839   class class class wbr 5074  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  supcsup 9199  cr 10870  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  (,)cioo 13079  (,]cioc 13080  t crest 17131  topGenctg 17148  Topctop 22042  SAlgcsalg 43849  SalGencsalgen 43853  SMblFncsmblfn 44233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-ioo 13083  df-ioc 13084  df-ico 13085  df-fl 13512  df-rest 17133  df-topgen 17154  df-top 22043  df-bases 22096  df-salg 43850  df-salgen 43854  df-smblfn 44234
This theorem is referenced by:  smfid  44288
  Copyright terms: Public domain W3C validator