Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupreuz Structured version   Visualization version   GIF version

Theorem limsupreuz 43278
Description: Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupreuz.1 𝑗𝐹
limsupreuz.2 (𝜑𝑀 ∈ ℤ)
limsupreuz.3 𝑍 = (ℤ𝑀)
limsupreuz.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
limsupreuz (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem limsupreuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2907 . . . 4 𝑙𝐹
2 limsupreuz.2 . . . 4 (𝜑𝑀 ∈ ℤ)
3 limsupreuz.3 . . . 4 𝑍 = (ℤ𝑀)
4 limsupreuz.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
54frexr 42924 . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
61, 2, 3, 5limsupre3uzlem 43276 . . 3 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦)))
7 breq1 5077 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
87rexbidv 3226 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
98ralbidv 3112 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
10 fveq2 6774 . . . . . . . . . . 11 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
1110rexeqdv 3349 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙)))
12 nfcv 2907 . . . . . . . . . . . . 13 𝑗𝑥
13 nfcv 2907 . . . . . . . . . . . . 13 𝑗
14 limsupreuz.1 . . . . . . . . . . . . . 14 𝑗𝐹
15 nfcv 2907 . . . . . . . . . . . . . 14 𝑗𝑙
1614, 15nffv 6784 . . . . . . . . . . . . 13 𝑗(𝐹𝑙)
1712, 13, 16nfbr 5121 . . . . . . . . . . . 12 𝑗 𝑥 ≤ (𝐹𝑙)
18 nfv 1917 . . . . . . . . . . . 12 𝑙 𝑥 ≤ (𝐹𝑗)
19 fveq2 6774 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
2019breq2d 5086 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑗)))
2117, 18, 20cbvrexw 3374 . . . . . . . . . . 11 (∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
2221a1i 11 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2311, 22bitrd 278 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2423cbvralvw 3383 . . . . . . . 8 (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
2524a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
269, 25bitrd 278 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2726cbvrexvw 3384 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
28 breq2 5078 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
2928ralbidv 3112 . . . . . . . 8 (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
3029rexbidv 3226 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
3110raleqdv 3348 . . . . . . . . . 10 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥))
3216, 13, 12nfbr 5121 . . . . . . . . . . . 12 𝑗(𝐹𝑙) ≤ 𝑥
33 nfv 1917 . . . . . . . . . . . 12 𝑙(𝐹𝑗) ≤ 𝑥
3419breq1d 5084 . . . . . . . . . . . 12 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
3532, 33, 34cbvralw 3373 . . . . . . . . . . 11 (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3635a1i 11 . . . . . . . . . 10 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
3731, 36bitrd 278 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
3837cbvrexvw 3384 . . . . . . . 8 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3938a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4030, 39bitrd 278 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4140cbvrexvw 3384 . . . . 5 (∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
4227, 41anbi12i 627 . . . 4 ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4342a1i 11 . . 3 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
446, 43bitrd 278 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
45 nfv 1917 . . . . . . . 8 𝑖(𝐹𝑗) ≤ 𝑥
46 nfcv 2907 . . . . . . . . . 10 𝑗𝑖
4714, 46nffv 6784 . . . . . . . . 9 𝑗(𝐹𝑖)
4847, 13, 12nfbr 5121 . . . . . . . 8 𝑗(𝐹𝑖) ≤ 𝑥
49 fveq2 6774 . . . . . . . . 9 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5049breq1d 5084 . . . . . . . 8 (𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥))
5145, 48, 50cbvralw 3373 . . . . . . 7 (∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5251rexbii 3181 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5352rexbii 3181 . . . . 5 (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5453a1i 11 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥))
55 nfv 1917 . . . . 5 𝑖𝜑
564adantr 481 . . . . . 6 ((𝜑𝑖𝑍) → 𝐹:𝑍⟶ℝ)
57 simpr 485 . . . . . 6 ((𝜑𝑖𝑍) → 𝑖𝑍)
5856, 57ffvelrnd 6962 . . . . 5 ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ ℝ)
5955, 2, 3, 58uzub 42971 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥))
60 eqcom 2745 . . . . . . . . . 10 (𝑗 = 𝑖𝑖 = 𝑗)
6160imbi1i 350 . . . . . . . . 9 ((𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)))
62 bicom 221 . . . . . . . . . 10 (((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥) ↔ ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
6362imbi2i 336 . . . . . . . . 9 ((𝑖 = 𝑗 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥)))
6461, 63bitri 274 . . . . . . . 8 ((𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥)))
6550, 64mpbi 229 . . . . . . 7 (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
6648, 45, 65cbvralw 3373 . . . . . 6 (∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
6766rexbii 3181 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
6867a1i 11 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥))
6954, 59, 683bitrd 305 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥))
7069anbi2d 629 . 2 (𝜑 → ((∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
7144, 70bitrd 278 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  wrex 3065   class class class wbr 5074  wf 6429  cfv 6433  cr 10870  cle 11010  cz 12319  cuz 12582  lim supclsp 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-ceil 13513  df-limsup 15180
This theorem is referenced by:  limsupreuzmpt  43280  limsupgtlem  43318
  Copyright terms: Public domain W3C validator