Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupreuz Structured version   Visualization version   GIF version

Theorem limsupreuz 45735
Description: Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupreuz.1 𝑗𝐹
limsupreuz.2 (𝜑𝑀 ∈ ℤ)
limsupreuz.3 𝑍 = (ℤ𝑀)
limsupreuz.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
limsupreuz (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem limsupreuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . 4 𝑙𝐹
2 limsupreuz.2 . . . 4 (𝜑𝑀 ∈ ℤ)
3 limsupreuz.3 . . . 4 𝑍 = (ℤ𝑀)
4 limsupreuz.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
54frexr 45381 . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
61, 2, 3, 5limsupre3uzlem 45733 . . 3 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦)))
7 breq1 5110 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
87rexbidv 3157 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
98ralbidv 3156 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
10 fveq2 6858 . . . . . . . . . . 11 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
1110rexeqdv 3300 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙)))
12 nfcv 2891 . . . . . . . . . . . . 13 𝑗𝑥
13 nfcv 2891 . . . . . . . . . . . . 13 𝑗
14 limsupreuz.1 . . . . . . . . . . . . . 14 𝑗𝐹
15 nfcv 2891 . . . . . . . . . . . . . 14 𝑗𝑙
1614, 15nffv 6868 . . . . . . . . . . . . 13 𝑗(𝐹𝑙)
1712, 13, 16nfbr 5154 . . . . . . . . . . . 12 𝑗 𝑥 ≤ (𝐹𝑙)
18 nfv 1914 . . . . . . . . . . . 12 𝑙 𝑥 ≤ (𝐹𝑗)
19 fveq2 6858 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
2019breq2d 5119 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑗)))
2117, 18, 20cbvrexw 3281 . . . . . . . . . . 11 (∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
2221a1i 11 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2311, 22bitrd 279 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2423cbvralvw 3215 . . . . . . . 8 (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
2524a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
269, 25bitrd 279 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2726cbvrexvw 3216 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
28 breq2 5111 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
2928ralbidv 3156 . . . . . . . 8 (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
3029rexbidv 3157 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
3110raleqdv 3299 . . . . . . . . . 10 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥))
3216, 13, 12nfbr 5154 . . . . . . . . . . . 12 𝑗(𝐹𝑙) ≤ 𝑥
33 nfv 1914 . . . . . . . . . . . 12 𝑙(𝐹𝑗) ≤ 𝑥
3419breq1d 5117 . . . . . . . . . . . 12 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
3532, 33, 34cbvralw 3280 . . . . . . . . . . 11 (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3635a1i 11 . . . . . . . . . 10 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
3731, 36bitrd 279 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
3837cbvrexvw 3216 . . . . . . . 8 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3938a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4030, 39bitrd 279 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4140cbvrexvw 3216 . . . . 5 (∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
4227, 41anbi12i 628 . . . 4 ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4342a1i 11 . . 3 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
446, 43bitrd 279 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
45 nfv 1914 . . . . . . . 8 𝑖(𝐹𝑗) ≤ 𝑥
46 nfcv 2891 . . . . . . . . . 10 𝑗𝑖
4714, 46nffv 6868 . . . . . . . . 9 𝑗(𝐹𝑖)
4847, 13, 12nfbr 5154 . . . . . . . 8 𝑗(𝐹𝑖) ≤ 𝑥
49 fveq2 6858 . . . . . . . . 9 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5049breq1d 5117 . . . . . . . 8 (𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥))
5145, 48, 50cbvralw 3280 . . . . . . 7 (∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5251rexbii 3076 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5352rexbii 3076 . . . . 5 (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5453a1i 11 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥))
55 nfv 1914 . . . . 5 𝑖𝜑
564adantr 480 . . . . . 6 ((𝜑𝑖𝑍) → 𝐹:𝑍⟶ℝ)
57 simpr 484 . . . . . 6 ((𝜑𝑖𝑍) → 𝑖𝑍)
5856, 57ffvelcdmd 7057 . . . . 5 ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ ℝ)
5955, 2, 3, 58uzub 45427 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥))
60 eqcom 2736 . . . . . . . . . 10 (𝑗 = 𝑖𝑖 = 𝑗)
6160imbi1i 349 . . . . . . . . 9 ((𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)))
62 bicom 222 . . . . . . . . . 10 (((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥) ↔ ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
6362imbi2i 336 . . . . . . . . 9 ((𝑖 = 𝑗 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥)))
6461, 63bitri 275 . . . . . . . 8 ((𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥)))
6550, 64mpbi 230 . . . . . . 7 (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
6648, 45, 65cbvralw 3280 . . . . . 6 (∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
6766rexbii 3076 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
6867a1i 11 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥))
6954, 59, 683bitrd 305 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥))
7069anbi2d 630 . 2 (𝜑 → ((∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
7144, 70bitrd 279 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053   class class class wbr 5107  wf 6507  cfv 6511  cr 11067  cle 11209  cz 12529  cuz 12793  lim supclsp 15436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-ceil 13755  df-limsup 15437
This theorem is referenced by:  limsupreuzmpt  45737  limsupgtlem  45775
  Copyright terms: Public domain W3C validator