Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupreuz Structured version   Visualization version   GIF version

Theorem limsupreuz 45728
Description: Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupreuz.1 𝑗𝐹
limsupreuz.2 (𝜑𝑀 ∈ ℤ)
limsupreuz.3 𝑍 = (ℤ𝑀)
limsupreuz.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
limsupreuz (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem limsupreuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . 4 𝑙𝐹
2 limsupreuz.2 . . . 4 (𝜑𝑀 ∈ ℤ)
3 limsupreuz.3 . . . 4 𝑍 = (ℤ𝑀)
4 limsupreuz.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
54frexr 45374 . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
61, 2, 3, 5limsupre3uzlem 45726 . . 3 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦)))
7 breq1 5105 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
87rexbidv 3157 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
98ralbidv 3156 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
10 fveq2 6840 . . . . . . . . . . 11 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
1110rexeqdv 3297 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙)))
12 nfcv 2891 . . . . . . . . . . . . 13 𝑗𝑥
13 nfcv 2891 . . . . . . . . . . . . 13 𝑗
14 limsupreuz.1 . . . . . . . . . . . . . 14 𝑗𝐹
15 nfcv 2891 . . . . . . . . . . . . . 14 𝑗𝑙
1614, 15nffv 6850 . . . . . . . . . . . . 13 𝑗(𝐹𝑙)
1712, 13, 16nfbr 5149 . . . . . . . . . . . 12 𝑗 𝑥 ≤ (𝐹𝑙)
18 nfv 1914 . . . . . . . . . . . 12 𝑙 𝑥 ≤ (𝐹𝑗)
19 fveq2 6840 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
2019breq2d 5114 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑗)))
2117, 18, 20cbvrexw 3279 . . . . . . . . . . 11 (∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
2221a1i 11 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2311, 22bitrd 279 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2423cbvralvw 3213 . . . . . . . 8 (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
2524a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
269, 25bitrd 279 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2726cbvrexvw 3214 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
28 breq2 5106 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
2928ralbidv 3156 . . . . . . . 8 (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
3029rexbidv 3157 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
3110raleqdv 3296 . . . . . . . . . 10 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥))
3216, 13, 12nfbr 5149 . . . . . . . . . . . 12 𝑗(𝐹𝑙) ≤ 𝑥
33 nfv 1914 . . . . . . . . . . . 12 𝑙(𝐹𝑗) ≤ 𝑥
3419breq1d 5112 . . . . . . . . . . . 12 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
3532, 33, 34cbvralw 3278 . . . . . . . . . . 11 (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3635a1i 11 . . . . . . . . . 10 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
3731, 36bitrd 279 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
3837cbvrexvw 3214 . . . . . . . 8 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3938a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4030, 39bitrd 279 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4140cbvrexvw 3214 . . . . 5 (∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
4227, 41anbi12i 628 . . . 4 ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4342a1i 11 . . 3 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
446, 43bitrd 279 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
45 nfv 1914 . . . . . . . 8 𝑖(𝐹𝑗) ≤ 𝑥
46 nfcv 2891 . . . . . . . . . 10 𝑗𝑖
4714, 46nffv 6850 . . . . . . . . 9 𝑗(𝐹𝑖)
4847, 13, 12nfbr 5149 . . . . . . . 8 𝑗(𝐹𝑖) ≤ 𝑥
49 fveq2 6840 . . . . . . . . 9 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5049breq1d 5112 . . . . . . . 8 (𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥))
5145, 48, 50cbvralw 3278 . . . . . . 7 (∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5251rexbii 3076 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5352rexbii 3076 . . . . 5 (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5453a1i 11 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥))
55 nfv 1914 . . . . 5 𝑖𝜑
564adantr 480 . . . . . 6 ((𝜑𝑖𝑍) → 𝐹:𝑍⟶ℝ)
57 simpr 484 . . . . . 6 ((𝜑𝑖𝑍) → 𝑖𝑍)
5856, 57ffvelcdmd 7039 . . . . 5 ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ ℝ)
5955, 2, 3, 58uzub 45420 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥))
60 eqcom 2736 . . . . . . . . . 10 (𝑗 = 𝑖𝑖 = 𝑗)
6160imbi1i 349 . . . . . . . . 9 ((𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)))
62 bicom 222 . . . . . . . . . 10 (((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥) ↔ ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
6362imbi2i 336 . . . . . . . . 9 ((𝑖 = 𝑗 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥)))
6461, 63bitri 275 . . . . . . . 8 ((𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥)))
6550, 64mpbi 230 . . . . . . 7 (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
6648, 45, 65cbvralw 3278 . . . . . 6 (∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
6766rexbii 3076 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
6867a1i 11 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥))
6954, 59, 683bitrd 305 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥))
7069anbi2d 630 . 2 (𝜑 → ((∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
7144, 70bitrd 279 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053   class class class wbr 5102  wf 6495  cfv 6499  cr 11043  cle 11185  cz 12505  cuz 12769  lim supclsp 15412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-ceil 13731  df-limsup 15413
This theorem is referenced by:  limsupreuzmpt  45730  limsupgtlem  45768
  Copyright terms: Public domain W3C validator