Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupreuz Structured version   Visualization version   GIF version

Theorem limsupreuz 43168
Description: Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupreuz.1 𝑗𝐹
limsupreuz.2 (𝜑𝑀 ∈ ℤ)
limsupreuz.3 𝑍 = (ℤ𝑀)
limsupreuz.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
limsupreuz (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem limsupreuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2906 . . . 4 𝑙𝐹
2 limsupreuz.2 . . . 4 (𝜑𝑀 ∈ ℤ)
3 limsupreuz.3 . . . 4 𝑍 = (ℤ𝑀)
4 limsupreuz.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
54frexr 42814 . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
61, 2, 3, 5limsupre3uzlem 43166 . . 3 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦)))
7 breq1 5073 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
87rexbidv 3225 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
98ralbidv 3120 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
10 fveq2 6756 . . . . . . . . . . 11 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
1110rexeqdv 3340 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙)))
12 nfcv 2906 . . . . . . . . . . . . 13 𝑗𝑥
13 nfcv 2906 . . . . . . . . . . . . 13 𝑗
14 limsupreuz.1 . . . . . . . . . . . . . 14 𝑗𝐹
15 nfcv 2906 . . . . . . . . . . . . . 14 𝑗𝑙
1614, 15nffv 6766 . . . . . . . . . . . . 13 𝑗(𝐹𝑙)
1712, 13, 16nfbr 5117 . . . . . . . . . . . 12 𝑗 𝑥 ≤ (𝐹𝑙)
18 nfv 1918 . . . . . . . . . . . 12 𝑙 𝑥 ≤ (𝐹𝑗)
19 fveq2 6756 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
2019breq2d 5082 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑗)))
2117, 18, 20cbvrexw 3364 . . . . . . . . . . 11 (∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
2221a1i 11 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2311, 22bitrd 278 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2423cbvralvw 3372 . . . . . . . 8 (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
2524a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
269, 25bitrd 278 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2726cbvrexvw 3373 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
28 breq2 5074 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
2928ralbidv 3120 . . . . . . . 8 (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
3029rexbidv 3225 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
3110raleqdv 3339 . . . . . . . . . 10 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥))
3216, 13, 12nfbr 5117 . . . . . . . . . . . 12 𝑗(𝐹𝑙) ≤ 𝑥
33 nfv 1918 . . . . . . . . . . . 12 𝑙(𝐹𝑗) ≤ 𝑥
3419breq1d 5080 . . . . . . . . . . . 12 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
3532, 33, 34cbvralw 3363 . . . . . . . . . . 11 (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3635a1i 11 . . . . . . . . . 10 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
3731, 36bitrd 278 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
3837cbvrexvw 3373 . . . . . . . 8 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3938a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4030, 39bitrd 278 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4140cbvrexvw 3373 . . . . 5 (∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
4227, 41anbi12i 626 . . . 4 ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4342a1i 11 . . 3 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
446, 43bitrd 278 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
45 nfv 1918 . . . . . . . 8 𝑖(𝐹𝑗) ≤ 𝑥
46 nfcv 2906 . . . . . . . . . 10 𝑗𝑖
4714, 46nffv 6766 . . . . . . . . 9 𝑗(𝐹𝑖)
4847, 13, 12nfbr 5117 . . . . . . . 8 𝑗(𝐹𝑖) ≤ 𝑥
49 fveq2 6756 . . . . . . . . 9 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5049breq1d 5080 . . . . . . . 8 (𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥))
5145, 48, 50cbvralw 3363 . . . . . . 7 (∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5251rexbii 3177 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5352rexbii 3177 . . . . 5 (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5453a1i 11 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥))
55 nfv 1918 . . . . 5 𝑖𝜑
564adantr 480 . . . . . 6 ((𝜑𝑖𝑍) → 𝐹:𝑍⟶ℝ)
57 simpr 484 . . . . . 6 ((𝜑𝑖𝑍) → 𝑖𝑍)
5856, 57ffvelrnd 6944 . . . . 5 ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ ℝ)
5955, 2, 3, 58uzub 42861 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥))
60 eqcom 2745 . . . . . . . . . 10 (𝑗 = 𝑖𝑖 = 𝑗)
6160imbi1i 349 . . . . . . . . 9 ((𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)))
62 bicom 221 . . . . . . . . . 10 (((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥) ↔ ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
6362imbi2i 335 . . . . . . . . 9 ((𝑖 = 𝑗 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥)))
6461, 63bitri 274 . . . . . . . 8 ((𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥)))
6550, 64mpbi 229 . . . . . . 7 (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
6648, 45, 65cbvralw 3363 . . . . . 6 (∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
6766rexbii 3177 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
6867a1i 11 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥))
6954, 59, 683bitrd 304 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥))
7069anbi2d 628 . 2 (𝜑 → ((∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
7144, 70bitrd 278 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wnfc 2886  wral 3063  wrex 3064   class class class wbr 5070  wf 6414  cfv 6418  cr 10801  cle 10941  cz 12249  cuz 12511  lim supclsp 15107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-ceil 13441  df-limsup 15108
This theorem is referenced by:  limsupreuzmpt  43170  limsupgtlem  43208
  Copyright terms: Public domain W3C validator