Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupreuz Structured version   Visualization version   GIF version

Theorem limsupreuz 43968
Description: Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupreuz.1 𝑗𝐹
limsupreuz.2 (𝜑𝑀 ∈ ℤ)
limsupreuz.3 𝑍 = (ℤ𝑀)
limsupreuz.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
limsupreuz (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem limsupreuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2907 . . . 4 𝑙𝐹
2 limsupreuz.2 . . . 4 (𝜑𝑀 ∈ ℤ)
3 limsupreuz.3 . . . 4 𝑍 = (ℤ𝑀)
4 limsupreuz.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
54frexr 43609 . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
61, 2, 3, 5limsupre3uzlem 43966 . . 3 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦)))
7 breq1 5108 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
87rexbidv 3175 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
98ralbidv 3174 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙)))
10 fveq2 6842 . . . . . . . . . . 11 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
1110rexeqdv 3314 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙)))
12 nfcv 2907 . . . . . . . . . . . . 13 𝑗𝑥
13 nfcv 2907 . . . . . . . . . . . . 13 𝑗
14 limsupreuz.1 . . . . . . . . . . . . . 14 𝑗𝐹
15 nfcv 2907 . . . . . . . . . . . . . 14 𝑗𝑙
1614, 15nffv 6852 . . . . . . . . . . . . 13 𝑗(𝐹𝑙)
1712, 13, 16nfbr 5152 . . . . . . . . . . . 12 𝑗 𝑥 ≤ (𝐹𝑙)
18 nfv 1917 . . . . . . . . . . . 12 𝑙 𝑥 ≤ (𝐹𝑗)
19 fveq2 6842 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
2019breq2d 5117 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑗)))
2117, 18, 20cbvrexw 3290 . . . . . . . . . . 11 (∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
2221a1i 11 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2311, 22bitrd 278 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2423cbvralvw 3225 . . . . . . . 8 (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
2524a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
269, 25bitrd 278 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
2726cbvrexvw 3226 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
28 breq2 5109 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
2928ralbidv 3174 . . . . . . . 8 (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
3029rexbidv 3175 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
3110raleqdv 3313 . . . . . . . . . 10 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥))
3216, 13, 12nfbr 5152 . . . . . . . . . . . 12 𝑗(𝐹𝑙) ≤ 𝑥
33 nfv 1917 . . . . . . . . . . . 12 𝑙(𝐹𝑗) ≤ 𝑥
3419breq1d 5115 . . . . . . . . . . . 12 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
3532, 33, 34cbvralw 3289 . . . . . . . . . . 11 (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3635a1i 11 . . . . . . . . . 10 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
3731, 36bitrd 278 . . . . . . . . 9 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
3837cbvrexvw 3226 . . . . . . . 8 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3938a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4030, 39bitrd 278 . . . . . 6 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4140cbvrexvw 3226 . . . . 5 (∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
4227, 41anbi12i 627 . . . 4 ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
4342a1i 11 . . 3 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑙) ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
446, 43bitrd 278 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
45 nfv 1917 . . . . . . . 8 𝑖(𝐹𝑗) ≤ 𝑥
46 nfcv 2907 . . . . . . . . . 10 𝑗𝑖
4714, 46nffv 6852 . . . . . . . . 9 𝑗(𝐹𝑖)
4847, 13, 12nfbr 5152 . . . . . . . 8 𝑗(𝐹𝑖) ≤ 𝑥
49 fveq2 6842 . . . . . . . . 9 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5049breq1d 5115 . . . . . . . 8 (𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥))
5145, 48, 50cbvralw 3289 . . . . . . 7 (∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5251rexbii 3097 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5352rexbii 3097 . . . . 5 (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥)
5453a1i 11 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥))
55 nfv 1917 . . . . 5 𝑖𝜑
564adantr 481 . . . . . 6 ((𝜑𝑖𝑍) → 𝐹:𝑍⟶ℝ)
57 simpr 485 . . . . . 6 ((𝜑𝑖𝑍) → 𝑖𝑍)
5856, 57ffvelcdmd 7036 . . . . 5 ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ ℝ)
5955, 2, 3, 58uzub 43656 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑖 ∈ (ℤ𝑘)(𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥))
60 eqcom 2743 . . . . . . . . . 10 (𝑗 = 𝑖𝑖 = 𝑗)
6160imbi1i 349 . . . . . . . . 9 ((𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)))
62 bicom 221 . . . . . . . . . 10 (((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥) ↔ ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
6362imbi2i 335 . . . . . . . . 9 ((𝑖 = 𝑗 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥)))
6461, 63bitri 274 . . . . . . . 8 ((𝑗 = 𝑖 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑖) ≤ 𝑥)) ↔ (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥)))
6550, 64mpbi 229 . . . . . . 7 (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
6648, 45, 65cbvralw 3289 . . . . . 6 (∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
6766rexbii 3097 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
6867a1i 11 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 (𝐹𝑖) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥))
6954, 59, 683bitrd 304 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥))
7069anbi2d 629 . 2 (𝜑 → ((∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
7144, 70bitrd 278 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wnfc 2887  wral 3064  wrex 3073   class class class wbr 5105  wf 6492  cfv 6496  cr 11050  cle 11190  cz 12499  cuz 12763  lim supclsp 15352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-ceil 13698  df-limsup 15353
This theorem is referenced by:  limsupreuzmpt  43970  limsupgtlem  44008
  Copyright terms: Public domain W3C validator