| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminflimsup2 | Structured version Visualization version GIF version | ||
| Description: A sequence of real numbers converges if and only if its superior limit is real and it is less than or equal to its inferior limit (in such a case, they are actually equal, see liminfgelimsupuz 45784). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| climliminflimsup2.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climliminflimsup2.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climliminflimsup2.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| Ref | Expression |
|---|---|
| climliminflimsup2 | ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climliminflimsup2.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | climliminflimsup2.2 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | climliminflimsup2.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 4 | 1, 2, 3 | climliminflimsup 45804 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))) |
| 5 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝑀 ∈ ℤ) |
| 6 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝐹:𝑍⟶ℝ) |
| 7 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) ∈ ℝ) | |
| 8 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) | |
| 9 | 5, 2, 6, 7, 8 | liminflimsupclim 45803 | . . . . . 6 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝐹 ∈ dom ⇝ ) |
| 10 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ) |
| 11 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹:𝑍⟶ℝ) |
| 12 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) | |
| 13 | 10, 2, 11, 12 | climliminflimsupd 45797 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 14 | 13 | eqcomd 2742 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (lim sup‘𝐹) = (lim inf‘𝐹)) |
| 15 | 9, 14 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) = (lim inf‘𝐹)) |
| 16 | 15, 7 | eqeltrd 2835 | . . . 4 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ∈ ℝ) |
| 17 | 16, 8 | jca 511 | . . 3 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) | |
| 19 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → 𝑀 ∈ ℤ) |
| 20 | 3 | frexr 45379 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 21 | 20 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → 𝐹:𝑍⟶ℝ*) |
| 22 | 19, 2, 21 | liminfgelimsupuz 45784 | . . . . . . 7 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) |
| 23 | 18, 22 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 24 | 23 | adantrl 716 | . . . . 5 ⊢ ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 25 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ∈ ℝ) | |
| 26 | 24, 25 | eqeltrd 2835 | . . . 4 ⊢ ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) ∈ ℝ) |
| 27 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) | |
| 28 | 26, 27 | jca 511 | . . 3 ⊢ ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) |
| 29 | 17, 28 | impbida 800 | . 2 ⊢ (𝜑 → (((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))) |
| 30 | 4, 29 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 ℝcr 11133 ℝ*cxr 11273 ≤ cle 11275 ℤcz 12593 ℤ≥cuz 12857 lim supclsp 15491 ⇝ cli 15505 lim infclsi 45747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-ioo 13371 df-ico 13373 df-fz 13530 df-fzo 13677 df-fl 13814 df-ceil 13815 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-liminf 45748 |
| This theorem is referenced by: climliminflimsup4 45807 |
| Copyright terms: Public domain | W3C validator |