Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climliminflimsup2 Structured version   Visualization version   GIF version

Theorem climliminflimsup2 43399
Description: A sequence of real numbers converges if and only if its superior limit is real and it is less than or equal to its inferior limit (in such a case, they are actually equal, see liminfgelimsupuz 43378). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climliminflimsup2.1 (𝜑𝑀 ∈ ℤ)
climliminflimsup2.2 𝑍 = (ℤ𝑀)
climliminflimsup2.3 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
climliminflimsup2 (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))

Proof of Theorem climliminflimsup2
StepHypRef Expression
1 climliminflimsup2.1 . . 3 (𝜑𝑀 ∈ ℤ)
2 climliminflimsup2.2 . . 3 𝑍 = (ℤ𝑀)
3 climliminflimsup2.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
41, 2, 3climliminflimsup 43398 . 2 (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))
51adantr 482 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝑀 ∈ ℤ)
63adantr 482 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝐹:𝑍⟶ℝ)
7 simprl 769 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) ∈ ℝ)
8 simprr 771 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
95, 2, 6, 7, 8liminflimsupclim 43397 . . . . . 6 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝐹 ∈ dom ⇝ )
101adantr 482 . . . . . . . 8 ((𝜑𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
113adantr 482 . . . . . . . 8 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹:𝑍⟶ℝ)
12 simpr 486 . . . . . . . 8 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
1310, 2, 11, 12climliminflimsupd 43391 . . . . . . 7 ((𝜑𝐹 ∈ dom ⇝ ) → (lim inf‘𝐹) = (lim sup‘𝐹))
1413eqcomd 2742 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → (lim sup‘𝐹) = (lim inf‘𝐹))
159, 14syldan 592 . . . . 5 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) = (lim inf‘𝐹))
1615, 7eqeltrd 2837 . . . 4 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ∈ ℝ)
1716, 8jca 513 . . 3 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))
18 simpr 486 . . . . . . 7 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
191adantr 482 . . . . . . . 8 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → 𝑀 ∈ ℤ)
203frexr 42972 . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ*)
2120adantr 482 . . . . . . . 8 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → 𝐹:𝑍⟶ℝ*)
2219, 2, 21liminfgelimsupuz 43378 . . . . . . 7 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))
2318, 22mpbid 231 . . . . . 6 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) = (lim sup‘𝐹))
2423adantrl 714 . . . . 5 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) = (lim sup‘𝐹))
25 simprl 769 . . . . 5 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ∈ ℝ)
2624, 25eqeltrd 2837 . . . 4 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) ∈ ℝ)
27 simprr 771 . . . 4 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
2826, 27jca 513 . . 3 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))
2917, 28impbida 799 . 2 (𝜑 → (((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))
304, 29bitrd 279 1 (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104   class class class wbr 5081  dom cdm 5600  wf 6454  cfv 6458  cr 10916  *cxr 11054  cle 11056  cz 12365  cuz 12628  lim supclsp 15224  cli 15238  lim infclsi 43341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9245  df-inf 9246  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-n0 12280  df-z 12366  df-uz 12629  df-q 12735  df-rp 12777  df-xneg 12894  df-xadd 12895  df-ioo 13129  df-ico 13131  df-fz 13286  df-fzo 13429  df-fl 13558  df-ceil 13559  df-seq 13768  df-exp 13829  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-limsup 15225  df-clim 15242  df-rlim 15243  df-liminf 43342
This theorem is referenced by:  climliminflimsup4  43401
  Copyright terms: Public domain W3C validator