Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climliminflimsup2 Structured version   Visualization version   GIF version

Theorem climliminflimsup2 45824
Description: A sequence of real numbers converges if and only if its superior limit is real and it is less than or equal to its inferior limit (in such a case, they are actually equal, see liminfgelimsupuz 45803). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climliminflimsup2.1 (𝜑𝑀 ∈ ℤ)
climliminflimsup2.2 𝑍 = (ℤ𝑀)
climliminflimsup2.3 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
climliminflimsup2 (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))

Proof of Theorem climliminflimsup2
StepHypRef Expression
1 climliminflimsup2.1 . . 3 (𝜑𝑀 ∈ ℤ)
2 climliminflimsup2.2 . . 3 𝑍 = (ℤ𝑀)
3 climliminflimsup2.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
41, 2, 3climliminflimsup 45823 . 2 (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))
51adantr 480 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝑀 ∈ ℤ)
63adantr 480 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝐹:𝑍⟶ℝ)
7 simprl 771 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) ∈ ℝ)
8 simprr 773 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
95, 2, 6, 7, 8liminflimsupclim 45822 . . . . . 6 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝐹 ∈ dom ⇝ )
101adantr 480 . . . . . . . 8 ((𝜑𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
113adantr 480 . . . . . . . 8 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹:𝑍⟶ℝ)
12 simpr 484 . . . . . . . 8 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
1310, 2, 11, 12climliminflimsupd 45816 . . . . . . 7 ((𝜑𝐹 ∈ dom ⇝ ) → (lim inf‘𝐹) = (lim sup‘𝐹))
1413eqcomd 2743 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → (lim sup‘𝐹) = (lim inf‘𝐹))
159, 14syldan 591 . . . . 5 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) = (lim inf‘𝐹))
1615, 7eqeltrd 2841 . . . 4 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ∈ ℝ)
1716, 8jca 511 . . 3 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))
18 simpr 484 . . . . . . 7 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
191adantr 480 . . . . . . . 8 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → 𝑀 ∈ ℤ)
203frexr 45396 . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ*)
2120adantr 480 . . . . . . . 8 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → 𝐹:𝑍⟶ℝ*)
2219, 2, 21liminfgelimsupuz 45803 . . . . . . 7 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))
2318, 22mpbid 232 . . . . . 6 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) = (lim sup‘𝐹))
2423adantrl 716 . . . . 5 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) = (lim sup‘𝐹))
25 simprl 771 . . . . 5 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ∈ ℝ)
2624, 25eqeltrd 2841 . . . 4 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) ∈ ℝ)
27 simprr 773 . . . 4 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
2826, 27jca 511 . . 3 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))
2917, 28impbida 801 . 2 (𝜑 → (((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))
304, 29bitrd 279 1 (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  dom cdm 5685  wf 6557  cfv 6561  cr 11154  *cxr 11294  cle 11296  cz 12613  cuz 12878  lim supclsp 15506  cli 15520  lim infclsi 45766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-ioo 13391  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-ceil 13833  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-liminf 45767
This theorem is referenced by:  climliminflimsup4  45826
  Copyright terms: Public domain W3C validator