Step | Hyp | Ref
| Expression |
1 | | climliminflimsup2.1 |
. . 3
β’ (π β π β β€) |
2 | | climliminflimsup2.2 |
. . 3
β’ π =
(β€β₯βπ) |
3 | | climliminflimsup2.3 |
. . 3
β’ (π β πΉ:πβΆβ) |
4 | 1, 2, 3 | climliminflimsup 44524 |
. 2
β’ (π β (πΉ β dom β β ((lim
infβπΉ) β β
β§ (lim supβπΉ)
β€ (lim infβπΉ)))) |
5 | 1 | adantr 482 |
. . . . . . 7
β’ ((π β§ ((lim infβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β π β
β€) |
6 | 3 | adantr 482 |
. . . . . . 7
β’ ((π β§ ((lim infβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β πΉ:πβΆβ) |
7 | | simprl 770 |
. . . . . . 7
β’ ((π β§ ((lim infβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β (lim
infβπΉ) β
β) |
8 | | simprr 772 |
. . . . . . 7
β’ ((π β§ ((lim infβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β (lim
supβπΉ) β€ (lim
infβπΉ)) |
9 | 5, 2, 6, 7, 8 | liminflimsupclim 44523 |
. . . . . 6
β’ ((π β§ ((lim infβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β πΉ β dom β
) |
10 | 1 | adantr 482 |
. . . . . . . 8
β’ ((π β§ πΉ β dom β ) β π β
β€) |
11 | 3 | adantr 482 |
. . . . . . . 8
β’ ((π β§ πΉ β dom β ) β πΉ:πβΆβ) |
12 | | simpr 486 |
. . . . . . . 8
β’ ((π β§ πΉ β dom β ) β πΉ β dom β
) |
13 | 10, 2, 11, 12 | climliminflimsupd 44517 |
. . . . . . 7
β’ ((π β§ πΉ β dom β ) β (lim
infβπΉ) = (lim
supβπΉ)) |
14 | 13 | eqcomd 2739 |
. . . . . 6
β’ ((π β§ πΉ β dom β ) β (lim
supβπΉ) = (lim
infβπΉ)) |
15 | 9, 14 | syldan 592 |
. . . . 5
β’ ((π β§ ((lim infβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β (lim
supβπΉ) = (lim
infβπΉ)) |
16 | 15, 7 | eqeltrd 2834 |
. . . 4
β’ ((π β§ ((lim infβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β (lim
supβπΉ) β
β) |
17 | 16, 8 | jca 513 |
. . 3
β’ ((π β§ ((lim infβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β ((lim
supβπΉ) β β
β§ (lim supβπΉ)
β€ (lim infβπΉ))) |
18 | | simpr 486 |
. . . . . . 7
β’ ((π β§ (lim supβπΉ) β€ (lim infβπΉ)) β (lim supβπΉ) β€ (lim infβπΉ)) |
19 | 1 | adantr 482 |
. . . . . . . 8
β’ ((π β§ (lim supβπΉ) β€ (lim infβπΉ)) β π β β€) |
20 | 3 | frexr 44095 |
. . . . . . . . 9
β’ (π β πΉ:πβΆβ*) |
21 | 20 | adantr 482 |
. . . . . . . 8
β’ ((π β§ (lim supβπΉ) β€ (lim infβπΉ)) β πΉ:πβΆβ*) |
22 | 19, 2, 21 | liminfgelimsupuz 44504 |
. . . . . . 7
β’ ((π β§ (lim supβπΉ) β€ (lim infβπΉ)) β ((lim supβπΉ) β€ (lim infβπΉ) β (lim infβπΉ) = (lim supβπΉ))) |
23 | 18, 22 | mpbid 231 |
. . . . . 6
β’ ((π β§ (lim supβπΉ) β€ (lim infβπΉ)) β (lim infβπΉ) = (lim supβπΉ)) |
24 | 23 | adantrl 715 |
. . . . 5
β’ ((π β§ ((lim supβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β (lim
infβπΉ) = (lim
supβπΉ)) |
25 | | simprl 770 |
. . . . 5
β’ ((π β§ ((lim supβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β (lim
supβπΉ) β
β) |
26 | 24, 25 | eqeltrd 2834 |
. . . 4
β’ ((π β§ ((lim supβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β (lim
infβπΉ) β
β) |
27 | | simprr 772 |
. . . 4
β’ ((π β§ ((lim supβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β (lim
supβπΉ) β€ (lim
infβπΉ)) |
28 | 26, 27 | jca 513 |
. . 3
β’ ((π β§ ((lim supβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ))) β ((lim
infβπΉ) β β
β§ (lim supβπΉ)
β€ (lim infβπΉ))) |
29 | 17, 28 | impbida 800 |
. 2
β’ (π β (((lim infβπΉ) β β β§ (lim
supβπΉ) β€ (lim
infβπΉ)) β ((lim
supβπΉ) β β
β§ (lim supβπΉ)
β€ (lim infβπΉ)))) |
30 | 4, 29 | bitrd 279 |
1
β’ (π β (πΉ β dom β β ((lim
supβπΉ) β β
β§ (lim supβπΉ)
β€ (lim infβπΉ)))) |