Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaioomnf Structured version   Visualization version   GIF version

Theorem preimaioomnf 46640
Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimaioomnf.1 (𝜑𝐹:𝐴⟶ℝ)
preimaioomnf.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
preimaioomnf (𝜑 → (𝐹 “ (-∞(,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem preimaioomnf
StepHypRef Expression
1 preimaioomnf.1 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
21ffund 6751 . . . 4 (𝜑 → Fun 𝐹)
31frnd 6755 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
4 fimacnvinrn2 7106 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 ⊆ ℝ) → (𝐹 “ (-∞[,)𝐵)) = (𝐹 “ ((-∞[,)𝐵) ∩ ℝ)))
52, 3, 4syl2anc 583 . . 3 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = (𝐹 “ ((-∞[,)𝐵) ∩ ℝ)))
6 preimaioomnf.2 . . . . 5 (𝜑𝐵 ∈ ℝ*)
76icomnfinre 45470 . . . 4 (𝜑 → ((-∞[,)𝐵) ∩ ℝ) = (-∞(,)𝐵))
87imaeq2d 6089 . . 3 (𝜑 → (𝐹 “ ((-∞[,)𝐵) ∩ ℝ)) = (𝐹 “ (-∞(,)𝐵)))
95, 8eqtr2d 2781 . 2 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = (𝐹 “ (-∞[,)𝐵)))
101frexr 45300 . . 3 (𝜑𝐹:𝐴⟶ℝ*)
1110, 6preimaicomnf 46632 . 2 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
129, 11eqtrd 2780 1 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  cin 3975  wss 3976   class class class wbr 5166  ccnv 5699  ran crn 5701  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  -∞cmnf 11322  *cxr 11323   < clt 11324  (,)cioo 13407  [,)cico 13409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ioo 13411  df-ico 13413
This theorem is referenced by:  issmflem  46648  mbfresmf  46660  smfres  46711  smfco  46723
  Copyright terms: Public domain W3C validator