![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaioomnf | Structured version Visualization version GIF version |
Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
preimaioomnf.1 | β’ (π β πΉ:π΄βΆβ) |
preimaioomnf.2 | β’ (π β π΅ β β*) |
Ref | Expression |
---|---|
preimaioomnf | β’ (π β (β‘πΉ β (-β(,)π΅)) = {π₯ β π΄ β£ (πΉβπ₯) < π΅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimaioomnf.1 | . . . . 5 β’ (π β πΉ:π΄βΆβ) | |
2 | 1 | ffund 6720 | . . . 4 β’ (π β Fun πΉ) |
3 | 1 | frnd 6724 | . . . 4 β’ (π β ran πΉ β β) |
4 | fimacnvinrn2 7076 | . . . 4 β’ ((Fun πΉ β§ ran πΉ β β) β (β‘πΉ β (-β[,)π΅)) = (β‘πΉ β ((-β[,)π΅) β© β))) | |
5 | 2, 3, 4 | syl2anc 582 | . . 3 β’ (π β (β‘πΉ β (-β[,)π΅)) = (β‘πΉ β ((-β[,)π΅) β© β))) |
6 | preimaioomnf.2 | . . . . 5 β’ (π β π΅ β β*) | |
7 | 6 | icomnfinre 44999 | . . . 4 β’ (π β ((-β[,)π΅) β© β) = (-β(,)π΅)) |
8 | 7 | imaeq2d 6058 | . . 3 β’ (π β (β‘πΉ β ((-β[,)π΅) β© β)) = (β‘πΉ β (-β(,)π΅))) |
9 | 5, 8 | eqtr2d 2766 | . 2 β’ (π β (β‘πΉ β (-β(,)π΅)) = (β‘πΉ β (-β[,)π΅))) |
10 | 1 | frexr 44829 | . . 3 β’ (π β πΉ:π΄βΆβ*) |
11 | 10, 6 | preimaicomnf 46161 | . 2 β’ (π β (β‘πΉ β (-β[,)π΅)) = {π₯ β π΄ β£ (πΉβπ₯) < π΅}) |
12 | 9, 11 | eqtrd 2765 | 1 β’ (π β (β‘πΉ β (-β(,)π΅)) = {π₯ β π΄ β£ (πΉβπ₯) < π΅}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {crab 3419 β© cin 3939 β wss 3940 class class class wbr 5143 β‘ccnv 5671 ran crn 5673 β cima 5675 Fun wfun 6536 βΆwf 6538 βcfv 6542 (class class class)co 7415 βcr 11135 -βcmnf 11274 β*cxr 11275 < clt 11276 (,)cioo 13354 [,)cico 13356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-pre-lttri 11210 ax-pre-lttrn 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-ioo 13358 df-ico 13360 |
This theorem is referenced by: issmflem 46177 mbfresmf 46189 smfres 46240 smfco 46252 |
Copyright terms: Public domain | W3C validator |