Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaioomnf Structured version   Visualization version   GIF version

Theorem preimaioomnf 45370
Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimaioomnf.1 (𝜑𝐹:𝐴⟶ℝ)
preimaioomnf.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
preimaioomnf (𝜑 → (𝐹 “ (-∞(,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem preimaioomnf
StepHypRef Expression
1 preimaioomnf.1 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
21ffund 6718 . . . 4 (𝜑 → Fun 𝐹)
31frnd 6722 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
4 fimacnvinrn2 7070 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 ⊆ ℝ) → (𝐹 “ (-∞[,)𝐵)) = (𝐹 “ ((-∞[,)𝐵) ∩ ℝ)))
52, 3, 4syl2anc 585 . . 3 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = (𝐹 “ ((-∞[,)𝐵) ∩ ℝ)))
6 preimaioomnf.2 . . . . 5 (𝜑𝐵 ∈ ℝ*)
76icomnfinre 44200 . . . 4 (𝜑 → ((-∞[,)𝐵) ∩ ℝ) = (-∞(,)𝐵))
87imaeq2d 6057 . . 3 (𝜑 → (𝐹 “ ((-∞[,)𝐵) ∩ ℝ)) = (𝐹 “ (-∞(,)𝐵)))
95, 8eqtr2d 2774 . 2 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = (𝐹 “ (-∞[,)𝐵)))
101frexr 44030 . . 3 (𝜑𝐹:𝐴⟶ℝ*)
1110, 6preimaicomnf 45362 . 2 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
129, 11eqtrd 2773 1 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {crab 3433  cin 3946  wss 3947   class class class wbr 5147  ccnv 5674  ran crn 5676  cima 5678  Fun wfun 6534  wf 6536  cfv 6540  (class class class)co 7404  cr 11105  -∞cmnf 11242  *cxr 11243   < clt 11244  (,)cioo 13320  [,)cico 13322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-ioo 13324  df-ico 13326
This theorem is referenced by:  issmflem  45378  mbfresmf  45390  smfres  45441  smfco  45453
  Copyright terms: Public domain W3C validator