Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaioomnf Structured version   Visualization version   GIF version

Theorem preimaioomnf 41838
Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimaioomnf.1 (𝜑𝐹:𝐴⟶ℝ)
preimaioomnf.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
preimaioomnf (𝜑 → (𝐹 “ (-∞(,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem preimaioomnf
StepHypRef Expression
1 preimaioomnf.1 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
21ffund 6295 . . . 4 (𝜑 → Fun 𝐹)
31frnd 6298 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
4 fimacnvinrn2 6613 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 ⊆ ℝ) → (𝐹 “ (-∞[,)𝐵)) = (𝐹 “ ((-∞[,)𝐵) ∩ ℝ)))
52, 3, 4syl2anc 579 . . 3 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = (𝐹 “ ((-∞[,)𝐵) ∩ ℝ)))
6 preimaioomnf.2 . . . . 5 (𝜑𝐵 ∈ ℝ*)
76icomnfinre 40669 . . . 4 (𝜑 → ((-∞[,)𝐵) ∩ ℝ) = (-∞(,)𝐵))
87imaeq2d 5720 . . 3 (𝜑 → (𝐹 “ ((-∞[,)𝐵) ∩ ℝ)) = (𝐹 “ (-∞(,)𝐵)))
95, 8eqtr2d 2814 . 2 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = (𝐹 “ (-∞[,)𝐵)))
101frexr 40494 . . 3 (𝜑𝐹:𝐴⟶ℝ*)
1110, 6preimaicomnf 41831 . 2 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
129, 11eqtrd 2813 1 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  {crab 3093  cin 3790  wss 3791   class class class wbr 4886  ccnv 5354  ran crn 5356  cima 5358  Fun wfun 6129  wf 6131  cfv 6135  (class class class)co 6922  cr 10271  -∞cmnf 10409  *cxr 10410   < clt 10411  (,)cioo 12487  [,)cico 12489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-pre-lttri 10346  ax-pre-lttrn 10347
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-ioo 12491  df-ico 12493
This theorem is referenced by:  issmflem  41845  mbfresmf  41857  smfres  41906  smfco  41918
  Copyright terms: Public domain W3C validator