| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaioomnf | Structured version Visualization version GIF version | ||
| Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| preimaioomnf.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| preimaioomnf.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| preimaioomnf | ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preimaioomnf.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 2 | 1 | ffund 6720 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
| 3 | 1 | frnd 6724 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 4 | fimacnvinrn2 7072 | . . . 4 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ ℝ) → (◡𝐹 “ (-∞[,)𝐵)) = (◡𝐹 “ ((-∞[,)𝐵) ∩ ℝ))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = (◡𝐹 “ ((-∞[,)𝐵) ∩ ℝ))) |
| 6 | preimaioomnf.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 7 | 6 | icomnfinre 45522 | . . . 4 ⊢ (𝜑 → ((-∞[,)𝐵) ∩ ℝ) = (-∞(,)𝐵)) |
| 8 | 7 | imaeq2d 6058 | . . 3 ⊢ (𝜑 → (◡𝐹 “ ((-∞[,)𝐵) ∩ ℝ)) = (◡𝐹 “ (-∞(,)𝐵))) |
| 9 | 5, 8 | eqtr2d 2770 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = (◡𝐹 “ (-∞[,)𝐵))) |
| 10 | 1 | frexr 45353 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| 11 | 10, 6 | preimaicomnf 46683 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
| 12 | 9, 11 | eqtrd 2769 | 1 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5123 ◡ccnv 5664 ran crn 5666 “ cima 5668 Fun wfun 6535 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 -∞cmnf 11275 ℝ*cxr 11276 < clt 11277 (,)cioo 13369 [,)cico 13371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-pre-lttri 11211 ax-pre-lttrn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-ioo 13373 df-ico 13375 |
| This theorem is referenced by: issmflem 46699 mbfresmf 46711 smfres 46762 smfco 46774 |
| Copyright terms: Public domain | W3C validator |