MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem1 Structured version   Visualization version   GIF version

Theorem frgrwopreglem1 30161
Description: Lemma 1 for frgrwopreg 30172: the classes 𝐴 and 𝐡 are sets. The definition of 𝐴 and 𝐡 corresponds to definition 3 in [Huneke] p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtxβ€˜πΊ)
frgrwopreg.d 𝐷 = (VtxDegβ€˜πΊ)
frgrwopreg.a 𝐴 = {π‘₯ ∈ 𝑉 ∣ (π·β€˜π‘₯) = 𝐾}
frgrwopreg.b 𝐡 = (𝑉 βˆ– 𝐴)
Assertion
Ref Expression
frgrwopreglem1 (𝐴 ∈ V ∧ 𝐡 ∈ V)
Distinct variable group:   π‘₯,𝑉
Allowed substitution hints:   𝐴(π‘₯)   𝐡(π‘₯)   𝐷(π‘₯)   𝐺(π‘₯)   𝐾(π‘₯)

Proof of Theorem frgrwopreglem1
StepHypRef Expression
1 frgrwopreg.v . . 3 𝑉 = (Vtxβ€˜πΊ)
21fvexi 6904 . 2 𝑉 ∈ V
3 frgrwopreg.a . . . 4 𝐴 = {π‘₯ ∈ 𝑉 ∣ (π·β€˜π‘₯) = 𝐾}
4 rabexg 5329 . . . 4 (𝑉 ∈ V β†’ {π‘₯ ∈ 𝑉 ∣ (π·β€˜π‘₯) = 𝐾} ∈ V)
53, 4eqeltrid 2829 . . 3 (𝑉 ∈ V β†’ 𝐴 ∈ V)
6 frgrwopreg.b . . . 4 𝐡 = (𝑉 βˆ– 𝐴)
7 difexg 5325 . . . 4 (𝑉 ∈ V β†’ (𝑉 βˆ– 𝐴) ∈ V)
86, 7eqeltrid 2829 . . 3 (𝑉 ∈ V β†’ 𝐡 ∈ V)
95, 8jca 510 . 2 (𝑉 ∈ V β†’ (𝐴 ∈ V ∧ 𝐡 ∈ V))
102, 9ax-mp 5 1 (𝐴 ∈ V ∧ 𝐡 ∈ V)
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 394   = wceq 1533   ∈ wcel 2098  {crab 3419  Vcvv 3463   βˆ– cdif 3938  β€˜cfv 6543  Vtxcvtx 28848  VtxDegcvtxdg 29318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5295  ax-nul 5302
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-sn 4626  df-pr 4628  df-uni 4905  df-iota 6495  df-fv 6551
This theorem is referenced by:  frgrwopreg2  30168  frgrwopreglem5  30170  frgrwopreglem5ALT  30171  frgrwopreg  30172
  Copyright terms: Public domain W3C validator