MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem1 Structured version   Visualization version   GIF version

Theorem frgrwopreglem1 28367
Description: Lemma 1 for frgrwopreg 28378: the classes 𝐴 and 𝐵 are sets. The definition of 𝐴 and 𝐵 corresponds to definition 3 in [Huneke] p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrwopreglem1 (𝐴 ∈ V ∧ 𝐵 ∈ V)
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem frgrwopreglem1
StepHypRef Expression
1 frgrwopreg.v . . 3 𝑉 = (Vtx‘𝐺)
21fvexi 6720 . 2 𝑉 ∈ V
3 frgrwopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 rabexg 5213 . . . 4 (𝑉 ∈ V → {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ∈ V)
53, 4eqeltrid 2838 . . 3 (𝑉 ∈ V → 𝐴 ∈ V)
6 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
7 difexg 5209 . . . 4 (𝑉 ∈ V → (𝑉𝐴) ∈ V)
86, 7eqeltrid 2838 . . 3 (𝑉 ∈ V → 𝐵 ∈ V)
95, 8jca 515 . 2 (𝑉 ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
102, 9ax-mp 5 1 (𝐴 ∈ V ∧ 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wcel 2110  {crab 3058  Vcvv 3401  cdif 3854  cfv 6369  Vtxcvtx 27059  VtxDegcvtxdg 27525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-sn 4532  df-pr 4534  df-uni 4810  df-iota 6327  df-fv 6377
This theorem is referenced by:  frgrwopreg2  28374  frgrwopreglem5  28376  frgrwopreglem5ALT  28377  frgrwopreg  28378
  Copyright terms: Public domain W3C validator