![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreglem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for frgrwopreg 29576: the classes π΄ and π΅ are sets. The definition of π΄ and π΅ corresponds to definition 3 in [Huneke] p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) |
Ref | Expression |
---|---|
frgrwopreg.v | β’ π = (VtxβπΊ) |
frgrwopreg.d | β’ π· = (VtxDegβπΊ) |
frgrwopreg.a | β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} |
frgrwopreg.b | β’ π΅ = (π β π΄) |
Ref | Expression |
---|---|
frgrwopreglem1 | β’ (π΄ β V β§ π΅ β V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . 3 β’ π = (VtxβπΊ) | |
2 | 1 | fvexi 6906 | . 2 β’ π β V |
3 | frgrwopreg.a | . . . 4 β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} | |
4 | rabexg 5332 | . . . 4 β’ (π β V β {π₯ β π β£ (π·βπ₯) = πΎ} β V) | |
5 | 3, 4 | eqeltrid 2838 | . . 3 β’ (π β V β π΄ β V) |
6 | frgrwopreg.b | . . . 4 β’ π΅ = (π β π΄) | |
7 | difexg 5328 | . . . 4 β’ (π β V β (π β π΄) β V) | |
8 | 6, 7 | eqeltrid 2838 | . . 3 β’ (π β V β π΅ β V) |
9 | 5, 8 | jca 513 | . 2 β’ (π β V β (π΄ β V β§ π΅ β V)) |
10 | 2, 9 | ax-mp 5 | 1 β’ (π΄ β V β§ π΅ β V) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 397 = wceq 1542 β wcel 2107 {crab 3433 Vcvv 3475 β cdif 3946 βcfv 6544 Vtxcvtx 28256 VtxDegcvtxdg 28722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-sn 4630 df-pr 4632 df-uni 4910 df-iota 6496 df-fv 6552 |
This theorem is referenced by: frgrwopreg2 29572 frgrwopreglem5 29574 frgrwopreglem5ALT 29575 frgrwopreg 29576 |
Copyright terms: Public domain | W3C validator |