| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrwopreglem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for frgrwopreg 30303: the classes 𝐴 and 𝐵 are sets. The definition of 𝐴 and 𝐵 corresponds to definition 3 in [Huneke] p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) |
| Ref | Expression |
|---|---|
| frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
| frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
| Ref | Expression |
|---|---|
| frgrwopreglem1 | ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrwopreg.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | fvexi 6836 | . 2 ⊢ 𝑉 ∈ V |
| 3 | frgrwopreg.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
| 4 | rabexg 5273 | . . . 4 ⊢ (𝑉 ∈ V → {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} ∈ V) | |
| 5 | 3, 4 | eqeltrid 2835 | . . 3 ⊢ (𝑉 ∈ V → 𝐴 ∈ V) |
| 6 | frgrwopreg.b | . . . 4 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
| 7 | difexg 5265 | . . . 4 ⊢ (𝑉 ∈ V → (𝑉 ∖ 𝐴) ∈ V) | |
| 8 | 6, 7 | eqeltrid 2835 | . . 3 ⊢ (𝑉 ∈ V → 𝐵 ∈ V) |
| 9 | 5, 8 | jca 511 | . 2 ⊢ (𝑉 ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 10 | 2, 9 | ax-mp 5 | 1 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∖ cdif 3894 ‘cfv 6481 Vtxcvtx 28974 VtxDegcvtxdg 29444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: frgrwopreg2 30299 frgrwopreglem5 30301 frgrwopreglem5ALT 30302 frgrwopreg 30303 |
| Copyright terms: Public domain | W3C validator |