MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem1 Structured version   Visualization version   GIF version

Theorem frgrwopreglem1 30344
Description: Lemma 1 for frgrwopreg 30355: the classes 𝐴 and 𝐵 are sets. The definition of 𝐴 and 𝐵 corresponds to definition 3 in [Huneke] p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrwopreglem1 (𝐴 ∈ V ∧ 𝐵 ∈ V)
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem frgrwopreglem1
StepHypRef Expression
1 frgrwopreg.v . . 3 𝑉 = (Vtx‘𝐺)
21fvexi 6934 . 2 𝑉 ∈ V
3 frgrwopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 rabexg 5355 . . . 4 (𝑉 ∈ V → {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ∈ V)
53, 4eqeltrid 2848 . . 3 (𝑉 ∈ V → 𝐴 ∈ V)
6 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
7 difexg 5347 . . . 4 (𝑉 ∈ V → (𝑉𝐴) ∈ V)
86, 7eqeltrid 2848 . . 3 (𝑉 ∈ V → 𝐵 ∈ V)
95, 8jca 511 . 2 (𝑉 ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
102, 9ax-mp 5 1 (𝐴 ∈ V ∧ 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cdif 3973  cfv 6573  Vtxcvtx 29031  VtxDegcvtxdg 29501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6525  df-fv 6581
This theorem is referenced by:  frgrwopreg2  30351  frgrwopreglem5  30353  frgrwopreglem5ALT  30354  frgrwopreg  30355
  Copyright terms: Public domain W3C validator