![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreglem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for frgrwopreg 30172: the classes π΄ and π΅ are sets. The definition of π΄ and π΅ corresponds to definition 3 in [Huneke] p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) |
Ref | Expression |
---|---|
frgrwopreg.v | β’ π = (VtxβπΊ) |
frgrwopreg.d | β’ π· = (VtxDegβπΊ) |
frgrwopreg.a | β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} |
frgrwopreg.b | β’ π΅ = (π β π΄) |
Ref | Expression |
---|---|
frgrwopreglem1 | β’ (π΄ β V β§ π΅ β V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . 3 β’ π = (VtxβπΊ) | |
2 | 1 | fvexi 6904 | . 2 β’ π β V |
3 | frgrwopreg.a | . . . 4 β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} | |
4 | rabexg 5329 | . . . 4 β’ (π β V β {π₯ β π β£ (π·βπ₯) = πΎ} β V) | |
5 | 3, 4 | eqeltrid 2829 | . . 3 β’ (π β V β π΄ β V) |
6 | frgrwopreg.b | . . . 4 β’ π΅ = (π β π΄) | |
7 | difexg 5325 | . . . 4 β’ (π β V β (π β π΄) β V) | |
8 | 6, 7 | eqeltrid 2829 | . . 3 β’ (π β V β π΅ β V) |
9 | 5, 8 | jca 510 | . 2 β’ (π β V β (π΄ β V β§ π΅ β V)) |
10 | 2, 9 | ax-mp 5 | 1 β’ (π΄ β V β§ π΅ β V) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 394 = wceq 1533 β wcel 2098 {crab 3419 Vcvv 3463 β cdif 3938 βcfv 6543 Vtxcvtx 28848 VtxDegcvtxdg 29318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5295 ax-nul 5302 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-sn 4626 df-pr 4628 df-uni 4905 df-iota 6495 df-fv 6551 |
This theorem is referenced by: frgrwopreg2 30168 frgrwopreglem5 30170 frgrwopreglem5ALT 30171 frgrwopreg 30172 |
Copyright terms: Public domain | W3C validator |