Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbpart6 Structured version   Visualization version   GIF version

Theorem gbpart6 47753
Description: The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbpart6 6 = (3 + 3)

Proof of Theorem gbpart6
StepHypRef Expression
1 3p3e6 12418 . 2 (3 + 3) = 6
21eqcomi 2746 1 6 = (3 + 3)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7431   + caddc 11158  3c3 12322  6c6 12325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-1cn 11213  ax-addcl 11215  ax-addass 11220
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333
This theorem is referenced by:  6gbe  47758  ackval41  48616
  Copyright terms: Public domain W3C validator