Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart6 | Structured version Visualization version GIF version |
Description: The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
gbpart6 | ⊢ 6 = (3 + 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p3e6 12125 | . 2 ⊢ (3 + 3) = 6 | |
2 | 1 | eqcomi 2747 | 1 ⊢ 6 = (3 + 3) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 + caddc 10874 3c3 12029 6c6 12032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-addcl 10931 ax-addass 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 |
This theorem is referenced by: 6gbe 45223 ackval41 46041 |
Copyright terms: Public domain | W3C validator |