| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart6 | Structured version Visualization version GIF version | ||
| Description: The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| gbpart6 | ⊢ 6 = (3 + 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3p3e6 12272 | . 2 ⊢ (3 + 3) = 6 | |
| 2 | 1 | eqcomi 2740 | 1 ⊢ 6 = (3 + 3) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 + caddc 11009 3c3 12181 6c6 12184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-addcl 11066 ax-addass 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 |
| This theorem is referenced by: 6gbe 47881 ackval41 48806 |
| Copyright terms: Public domain | W3C validator |