Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbpart6 Structured version   Visualization version   GIF version

Theorem gbpart6 47691
Description: The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbpart6 6 = (3 + 3)

Proof of Theorem gbpart6
StepHypRef Expression
1 3p3e6 12416 . 2 (3 + 3) = 6
21eqcomi 2744 1 6 = (3 + 3)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7431   + caddc 11156  3c3 12320  6c6 12323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-1cn 11211  ax-addcl 11213  ax-addass 11218
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331
This theorem is referenced by:  6gbe  47696  ackval41  48545
  Copyright terms: Public domain W3C validator