| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart6 | Structured version Visualization version GIF version | ||
| Description: The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| gbpart6 | ⊢ 6 = (3 + 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3p3e6 12309 | . 2 ⊢ (3 + 3) = 6 | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ 6 = (3 + 3) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 + caddc 11047 3c3 12218 6c6 12221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addcl 11104 ax-addass 11109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 |
| This theorem is referenced by: 6gbe 47745 ackval41 48657 |
| Copyright terms: Public domain | W3C validator |