Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbpart6 Structured version   Visualization version   GIF version

Theorem gbpart6 46434
Description: The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbpart6 6 = (3 + 3)

Proof of Theorem gbpart6
StepHypRef Expression
1 3p3e6 12364 . 2 (3 + 3) = 6
21eqcomi 2742 1 6 = (3 + 3)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  (class class class)co 7409   + caddc 11113  3c3 12268  6c6 12271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-1cn 11168  ax-addcl 11170  ax-addass 11175
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279
This theorem is referenced by:  6gbe  46439  ackval41  47381
  Copyright terms: Public domain W3C validator