Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbpart6 Structured version   Visualization version   GIF version

Theorem gbpart6 44210
 Description: The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbpart6 6 = (3 + 3)

Proof of Theorem gbpart6
StepHypRef Expression
1 3p3e6 11786 . 2 (3 + 3) = 6
21eqcomi 2833 1 6 = (3 + 3)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538  (class class class)co 7149   + caddc 10538  3c3 11690  6c6 11693 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796  ax-1cn 10593  ax-addcl 10595  ax-addass 10600 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-un 3924  df-in 3926  df-ss 3936  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-iota 6302  df-fv 6351  df-ov 7152  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701 This theorem is referenced by:  6gbe  44215  ackval41  45035
 Copyright terms: Public domain W3C validator