![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart7 | Structured version Visualization version GIF version |
Description: The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
gbpart7 | ⊢ 7 = ((2 + 2) + 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2p2e4 12399 | . . 3 ⊢ (2 + 2) = 4 | |
2 | 1 | oveq1i 7441 | . 2 ⊢ ((2 + 2) + 3) = (4 + 3) |
3 | 4p3e7 12418 | . 2 ⊢ (4 + 3) = 7 | |
4 | 2, 3 | eqtr2i 2764 | 1 ⊢ 7 = ((2 + 2) + 3) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 + caddc 11156 2c2 12319 3c3 12320 4c4 12321 7c7 12324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-1cn 11211 ax-addcl 11213 ax-addass 11218 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 |
This theorem is referenced by: 7gbow 47697 |
Copyright terms: Public domain | W3C validator |