Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart7 | Structured version Visualization version GIF version |
Description: The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
gbpart7 | ⊢ 7 = ((2 + 2) + 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2p2e4 12013 | . . 3 ⊢ (2 + 2) = 4 | |
2 | 1 | oveq1i 7262 | . 2 ⊢ ((2 + 2) + 3) = (4 + 3) |
3 | 4p3e7 12032 | . 2 ⊢ (4 + 3) = 7 | |
4 | 2, 3 | eqtr2i 2768 | 1 ⊢ 7 = ((2 + 2) + 3) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 (class class class)co 7252 + caddc 10780 2c2 11933 3c3 11934 4c4 11935 7c7 11938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-1cn 10835 ax-addcl 10837 ax-addass 10842 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 df-ov 7255 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 |
This theorem is referenced by: 7gbow 45085 |
Copyright terms: Public domain | W3C validator |