Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbpart7 Structured version   Visualization version   GIF version

Theorem gbpart7 45080
Description: The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbpart7 7 = ((2 + 2) + 3)

Proof of Theorem gbpart7
StepHypRef Expression
1 2p2e4 12013 . . 3 (2 + 2) = 4
21oveq1i 7262 . 2 ((2 + 2) + 3) = (4 + 3)
3 4p3e7 12032 . 2 (4 + 3) = 7
42, 3eqtr2i 2768 1 7 = ((2 + 2) + 3)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  (class class class)co 7252   + caddc 10780  2c2 11933  3c3 11934  4c4 11935  7c7 11938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-1cn 10835  ax-addcl 10837  ax-addass 10842
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6373  df-fv 6423  df-ov 7255  df-2 11941  df-3 11942  df-4 11943  df-5 11944  df-6 11945  df-7 11946
This theorem is referenced by:  7gbow  45085
  Copyright terms: Public domain W3C validator