| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart7 | Structured version Visualization version GIF version | ||
| Description: The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| gbpart7 | ⊢ 7 = ((2 + 2) + 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p2e4 12323 | . . 3 ⊢ (2 + 2) = 4 | |
| 2 | 1 | oveq1i 7400 | . 2 ⊢ ((2 + 2) + 3) = (4 + 3) |
| 3 | 4p3e7 12342 | . 2 ⊢ (4 + 3) = 7 | |
| 4 | 2, 3 | eqtr2i 2754 | 1 ⊢ 7 = ((2 + 2) + 3) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 + caddc 11078 2c2 12248 3c3 12249 4c4 12250 7c7 12253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addcl 11135 ax-addass 11140 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 |
| This theorem is referenced by: 7gbow 47777 |
| Copyright terms: Public domain | W3C validator |