| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart7 | Structured version Visualization version GIF version | ||
| Description: The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| gbpart7 | ⊢ 7 = ((2 + 2) + 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p2e4 12255 | . . 3 ⊢ (2 + 2) = 4 | |
| 2 | 1 | oveq1i 7356 | . 2 ⊢ ((2 + 2) + 3) = (4 + 3) |
| 3 | 4p3e7 12274 | . 2 ⊢ (4 + 3) = 7 | |
| 4 | 2, 3 | eqtr2i 2755 | 1 ⊢ 7 = ((2 + 2) + 3) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 + caddc 11009 2c2 12180 3c3 12181 4c4 12182 7c7 12185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-addcl 11066 ax-addass 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 |
| This theorem is referenced by: 7gbow 47882 |
| Copyright terms: Public domain | W3C validator |