Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbpart7 Structured version   Visualization version   GIF version

Theorem gbpart7 47244
Description: The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbpart7 7 = ((2 + 2) + 3)

Proof of Theorem gbpart7
StepHypRef Expression
1 2p2e4 12380 . . 3 (2 + 2) = 4
21oveq1i 7429 . 2 ((2 + 2) + 3) = (4 + 3)
3 4p3e7 12399 . 2 (4 + 3) = 7
42, 3eqtr2i 2754 1 7 = ((2 + 2) + 3)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  (class class class)co 7419   + caddc 11143  2c2 12300  3c3 12301  4c4 12302  7c7 12305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-1cn 11198  ax-addcl 11200  ax-addass 11205
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-ov 7422  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313
This theorem is referenced by:  7gbow  47249
  Copyright terms: Public domain W3C validator