| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart7 | Structured version Visualization version GIF version | ||
| Description: The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| gbpart7 | ⊢ 7 = ((2 + 2) + 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p2e4 12316 | . . 3 ⊢ (2 + 2) = 4 | |
| 2 | 1 | oveq1i 7397 | . 2 ⊢ ((2 + 2) + 3) = (4 + 3) |
| 3 | 4p3e7 12335 | . 2 ⊢ (4 + 3) = 7 | |
| 4 | 2, 3 | eqtr2i 2753 | 1 ⊢ 7 = ((2 + 2) + 3) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 + caddc 11071 2c2 12241 3c3 12242 4c4 12243 7c7 12246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 ax-addass 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 |
| This theorem is referenced by: 7gbow 47773 |
| Copyright terms: Public domain | W3C validator |