| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart7 | Structured version Visualization version GIF version | ||
| Description: The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| gbpart7 | ⊢ 7 = ((2 + 2) + 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p2e4 12401 | . . 3 ⊢ (2 + 2) = 4 | |
| 2 | 1 | oveq1i 7441 | . 2 ⊢ ((2 + 2) + 3) = (4 + 3) |
| 3 | 4p3e7 12420 | . 2 ⊢ (4 + 3) = 7 | |
| 4 | 2, 3 | eqtr2i 2766 | 1 ⊢ 7 = ((2 + 2) + 3) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7431 + caddc 11158 2c2 12321 3c3 12322 4c4 12323 7c7 12326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-1cn 11213 ax-addcl 11215 ax-addass 11220 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 |
| This theorem is referenced by: 7gbow 47759 |
| Copyright terms: Public domain | W3C validator |