| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41 | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
| Ref | Expression |
|---|---|
| ackval41 | ⊢ ((Ack‘4)‘1) = ;;;;65533 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackval41a 48641 | . 2 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) | |
| 2 | 6nn0 12527 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
| 3 | 5nn0 12526 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12728 | . . . . 5 ⊢ ;65 ∈ ℕ0 |
| 5 | 4, 3 | deccl 12728 | . . . 4 ⊢ ;;655 ∈ ℕ0 |
| 6 | 3nn0 12524 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 7 | 5, 6 | deccl 12728 | . . 3 ⊢ ;;;6553 ∈ ℕ0 |
| 8 | 2exp16 17115 | . . 3 ⊢ (2↑;16) = ;;;;65536 | |
| 9 | 3p1e4 12390 | . . . 4 ⊢ (3 + 1) = 4 | |
| 10 | eqid 2736 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 11 | 5, 6, 9, 10 | decsuc 12744 | . . 3 ⊢ (;;;6553 + 1) = ;;;6554 |
| 12 | 3cn 12326 | . . . 4 ⊢ 3 ∈ ℂ | |
| 13 | gbpart6 47747 | . . . 4 ⊢ 6 = (3 + 3) | |
| 14 | 12, 12, 13 | mvrraddi 11504 | . . 3 ⊢ (6 − 3) = 3 |
| 15 | 7, 2, 6, 8, 11, 14 | decsubi 12776 | . 2 ⊢ ((2↑;16) − 3) = ;;;;65533 |
| 16 | 1, 15 | eqtri 2759 | 1 ⊢ ((Ack‘4)‘1) = ;;;;65533 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6536 (class class class)co 7410 1c1 11135 − cmin 11471 2c2 12300 3c3 12301 4c4 12302 5c5 12303 6c6 12304 ;cdc 12713 ↑cexp 14084 Ackcack 48605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-seq 14025 df-exp 14085 df-itco 48606 df-ack 48607 |
| This theorem is referenced by: ackval50 48645 |
| Copyright terms: Public domain | W3C validator |