| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41 | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
| Ref | Expression |
|---|---|
| ackval41 | ⊢ ((Ack‘4)‘1) = ;;;;65533 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackval41a 48726 | . 2 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) | |
| 2 | 6nn0 12397 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
| 3 | 5nn0 12396 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12598 | . . . . 5 ⊢ ;65 ∈ ℕ0 |
| 5 | 4, 3 | deccl 12598 | . . . 4 ⊢ ;;655 ∈ ℕ0 |
| 6 | 3nn0 12394 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 7 | 5, 6 | deccl 12598 | . . 3 ⊢ ;;;6553 ∈ ℕ0 |
| 8 | 2exp16 16997 | . . 3 ⊢ (2↑;16) = ;;;;65536 | |
| 9 | 3p1e4 12260 | . . . 4 ⊢ (3 + 1) = 4 | |
| 10 | eqid 2731 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 11 | 5, 6, 9, 10 | decsuc 12614 | . . 3 ⊢ (;;;6553 + 1) = ;;;6554 |
| 12 | 3cn 12201 | . . . 4 ⊢ 3 ∈ ℂ | |
| 13 | gbpart6 47797 | . . . 4 ⊢ 6 = (3 + 3) | |
| 14 | 12, 12, 13 | mvrraddi 11372 | . . 3 ⊢ (6 − 3) = 3 |
| 15 | 7, 2, 6, 8, 11, 14 | decsubi 12646 | . 2 ⊢ ((2↑;16) − 3) = ;;;;65533 |
| 16 | 1, 15 | eqtri 2754 | 1 ⊢ ((Ack‘4)‘1) = ;;;;65533 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ‘cfv 6476 (class class class)co 7341 1c1 11002 − cmin 11339 2c2 12175 3c3 12176 4c4 12177 5c5 12178 6c6 12179 ;cdc 12583 ↑cexp 13963 Ackcack 48690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-ot 4580 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-seq 13904 df-exp 13964 df-itco 48691 df-ack 48692 |
| This theorem is referenced by: ackval50 48730 |
| Copyright terms: Public domain | W3C validator |