Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41 | Structured version Visualization version GIF version |
Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
Ref | Expression |
---|---|
ackval41 | ⊢ ((Ack‘4)‘1) = ;;;;65533 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval41a 45532 | . 2 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) | |
2 | 6nn0 11968 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
3 | 5nn0 11967 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
4 | 2, 3 | deccl 12165 | . . . . 5 ⊢ ;65 ∈ ℕ0 |
5 | 4, 3 | deccl 12165 | . . . 4 ⊢ ;;655 ∈ ℕ0 |
6 | 3nn0 11965 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | 5, 6 | deccl 12165 | . . 3 ⊢ ;;;6553 ∈ ℕ0 |
8 | 2exp16 16496 | . . 3 ⊢ (2↑;16) = ;;;;65536 | |
9 | 3p1e4 11832 | . . . 4 ⊢ (3 + 1) = 4 | |
10 | eqid 2758 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
11 | 5, 6, 9, 10 | decsuc 12181 | . . 3 ⊢ (;;;6553 + 1) = ;;;6554 |
12 | 3cn 11768 | . . . 4 ⊢ 3 ∈ ℂ | |
13 | gbpart6 44710 | . . . 4 ⊢ 6 = (3 + 3) | |
14 | 12, 12, 13 | mvrraddi 10954 | . . 3 ⊢ (6 − 3) = 3 |
15 | 7, 2, 6, 8, 11, 14 | decsubi 12213 | . 2 ⊢ ((2↑;16) − 3) = ;;;;65533 |
16 | 1, 15 | eqtri 2781 | 1 ⊢ ((Ack‘4)‘1) = ;;;;65533 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ‘cfv 6340 (class class class)co 7156 1c1 10589 − cmin 10921 2c2 11742 3c3 11743 4c4 11744 5c5 11745 6c6 11746 ;cdc 12150 ↑cexp 13492 Ackcack 45496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-ot 4534 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-seq 13432 df-exp 13493 df-itco 45497 df-ack 45498 |
This theorem is referenced by: ackval50 45536 |
Copyright terms: Public domain | W3C validator |