![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41 | Structured version Visualization version GIF version |
Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
Ref | Expression |
---|---|
ackval41 | ⊢ ((Ack‘4)‘1) = ;;;;65533 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval41a 47863 | . 2 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) | |
2 | 6nn0 12533 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
3 | 5nn0 12532 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
4 | 2, 3 | deccl 12732 | . . . . 5 ⊢ ;65 ∈ ℕ0 |
5 | 4, 3 | deccl 12732 | . . . 4 ⊢ ;;655 ∈ ℕ0 |
6 | 3nn0 12530 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | 5, 6 | deccl 12732 | . . 3 ⊢ ;;;6553 ∈ ℕ0 |
8 | 2exp16 17069 | . . 3 ⊢ (2↑;16) = ;;;;65536 | |
9 | 3p1e4 12397 | . . . 4 ⊢ (3 + 1) = 4 | |
10 | eqid 2728 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
11 | 5, 6, 9, 10 | decsuc 12748 | . . 3 ⊢ (;;;6553 + 1) = ;;;6554 |
12 | 3cn 12333 | . . . 4 ⊢ 3 ∈ ℂ | |
13 | gbpart6 47153 | . . . 4 ⊢ 6 = (3 + 3) | |
14 | 12, 12, 13 | mvrraddi 11517 | . . 3 ⊢ (6 − 3) = 3 |
15 | 7, 2, 6, 8, 11, 14 | decsubi 12780 | . 2 ⊢ ((2↑;16) − 3) = ;;;;65533 |
16 | 1, 15 | eqtri 2756 | 1 ⊢ ((Ack‘4)‘1) = ;;;;65533 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ‘cfv 6553 (class class class)co 7426 1c1 11149 − cmin 11484 2c2 12307 3c3 12308 4c4 12309 5c5 12310 6c6 12311 ;cdc 12717 ↑cexp 14068 Ackcack 47827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-inf2 9674 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-ot 4641 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-seq 14009 df-exp 14069 df-itco 47828 df-ack 47829 |
This theorem is referenced by: ackval50 47867 |
Copyright terms: Public domain | W3C validator |