![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval41 | Structured version Visualization version GIF version |
Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
Ref | Expression |
---|---|
ackval41 | ⊢ ((Ack‘4)‘1) = ;;;;65533 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval41a 47652 | . 2 ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) | |
2 | 6nn0 12497 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
3 | 5nn0 12496 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
4 | 2, 3 | deccl 12696 | . . . . 5 ⊢ ;65 ∈ ℕ0 |
5 | 4, 3 | deccl 12696 | . . . 4 ⊢ ;;655 ∈ ℕ0 |
6 | 3nn0 12494 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | 5, 6 | deccl 12696 | . . 3 ⊢ ;;;6553 ∈ ℕ0 |
8 | 2exp16 17033 | . . 3 ⊢ (2↑;16) = ;;;;65536 | |
9 | 3p1e4 12361 | . . . 4 ⊢ (3 + 1) = 4 | |
10 | eqid 2726 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
11 | 5, 6, 9, 10 | decsuc 12712 | . . 3 ⊢ (;;;6553 + 1) = ;;;6554 |
12 | 3cn 12297 | . . . 4 ⊢ 3 ∈ ℂ | |
13 | gbpart6 47003 | . . . 4 ⊢ 6 = (3 + 3) | |
14 | 12, 12, 13 | mvrraddi 11481 | . . 3 ⊢ (6 − 3) = 3 |
15 | 7, 2, 6, 8, 11, 14 | decsubi 12744 | . 2 ⊢ ((2↑;16) − 3) = ;;;;65533 |
16 | 1, 15 | eqtri 2754 | 1 ⊢ ((Ack‘4)‘1) = ;;;;65533 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ‘cfv 6537 (class class class)co 7405 1c1 11113 − cmin 11448 2c2 12271 3c3 12272 4c4 12273 5c5 12274 6c6 12275 ;cdc 12681 ↑cexp 14032 Ackcack 47616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-ot 4632 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-seq 13973 df-exp 14033 df-itco 47617 df-ack 47618 |
This theorem is referenced by: ackval50 47656 |
Copyright terms: Public domain | W3C validator |