| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p3e6 | Structured version Visualization version GIF version | ||
| Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p3e6 | ⊢ (3 + 3) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12226 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7380 | . . 3 ⊢ (3 + 3) = (3 + (2 + 1)) |
| 3 | 3cn 12243 | . . . 4 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 12237 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11102 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11160 | . . 3 ⊢ ((3 + 2) + 1) = (3 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2755 | . 2 ⊢ (3 + 3) = ((3 + 2) + 1) |
| 8 | df-6 12229 | . . 3 ⊢ 6 = (5 + 1) | |
| 9 | 3p2e5 12308 | . . . 4 ⊢ (3 + 2) = 5 | |
| 10 | 9 | oveq1i 7379 | . . 3 ⊢ ((3 + 2) + 1) = (5 + 1) |
| 11 | 8, 10 | eqtr4i 2755 | . 2 ⊢ 6 = ((3 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2755 | 1 ⊢ (3 + 3) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 2c2 12217 3c3 12218 5c5 12220 6c6 12221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addcl 11104 ax-addass 11109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 |
| This theorem is referenced by: 3t2e6 12323 163prm 17071 631prm 17073 2503prm 17086 binom4 26736 ex-dvds 30358 ex-gcd 30359 kur14lem8 35173 ex-decpmul 42267 3cubeslem3l 42647 gbegt5 47735 gboge9 47738 gbpart6 47740 gbpart9 47743 gbpart11 47744 zlmodzxzequa 48458 ackval3012 48654 ackval41a 48656 |
| Copyright terms: Public domain | W3C validator |