| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p3e6 | Structured version Visualization version GIF version | ||
| Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p3e6 | ⊢ (3 + 3) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12192 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7360 | . . 3 ⊢ (3 + 3) = (3 + (2 + 1)) |
| 3 | 3cn 12209 | . . . 4 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 12203 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11067 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11125 | . . 3 ⊢ ((3 + 2) + 1) = (3 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2755 | . 2 ⊢ (3 + 3) = ((3 + 2) + 1) |
| 8 | df-6 12195 | . . 3 ⊢ 6 = (5 + 1) | |
| 9 | 3p2e5 12274 | . . . 4 ⊢ (3 + 2) = 5 | |
| 10 | 9 | oveq1i 7359 | . . 3 ⊢ ((3 + 2) + 1) = (5 + 1) |
| 11 | 8, 10 | eqtr4i 2755 | . 2 ⊢ 6 = ((3 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2755 | 1 ⊢ (3 + 3) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 2c2 12183 3c3 12184 5c5 12186 6c6 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-addcl 11069 ax-addass 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 |
| This theorem is referenced by: 3t2e6 12289 163prm 17036 631prm 17038 2503prm 17051 binom4 26758 ex-dvds 30400 ex-gcd 30401 kur14lem8 35186 ex-decpmul 42279 3cubeslem3l 42659 gbegt5 47745 gboge9 47748 gbpart6 47750 gbpart9 47753 gbpart11 47754 zlmodzxzequa 48481 ackval3012 48677 ackval41a 48679 |
| Copyright terms: Public domain | W3C validator |