MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3p3e6 Structured version   Visualization version   GIF version

Theorem 3p3e6 11781
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6 (3 + 3) = 6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 11693 . . . 4 3 = (2 + 1)
21oveq2i 7150 . . 3 (3 + 3) = (3 + (2 + 1))
3 3cn 11710 . . . 4 3 ∈ ℂ
4 2cn 11704 . . . 4 2 ∈ ℂ
5 ax-1cn 10588 . . . 4 1 ∈ ℂ
63, 4, 5addassi 10644 . . 3 ((3 + 2) + 1) = (3 + (2 + 1))
72, 6eqtr4i 2827 . 2 (3 + 3) = ((3 + 2) + 1)
8 df-6 11696 . . 3 6 = (5 + 1)
9 3p2e5 11780 . . . 4 (3 + 2) = 5
109oveq1i 7149 . . 3 ((3 + 2) + 1) = (5 + 1)
118, 10eqtr4i 2827 . 2 6 = ((3 + 2) + 1)
127, 11eqtr4i 2827 1 (3 + 3) = 6
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  (class class class)co 7139  1c1 10531   + caddc 10533  2c2 11684  3c3 11685  5c5 11687  6c6 11688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773  ax-1cn 10588  ax-addcl 10590  ax-addass 10595
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-v 3446  df-un 3889  df-in 3891  df-ss 3901  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-iota 6287  df-fv 6336  df-ov 7142  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696
This theorem is referenced by:  3t2e6  11795  163prm  16453  631prm  16455  2503prm  16468  binom4  25439  ex-dvds  28244  ex-gcd  28245  kur14lem8  32568  ex-decpmul  39473  3cubeslem3l  39614  gbegt5  44266  gboge9  44269  gbpart6  44271  gbpart9  44274  gbpart11  44275  zlmodzxzequa  44892  ackval3012  45093  ackval41a  45095
  Copyright terms: Public domain W3C validator