| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p3e6 | Structured version Visualization version GIF version | ||
| Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p3e6 | ⊢ (3 + 3) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12184 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7352 | . . 3 ⊢ (3 + 3) = (3 + (2 + 1)) |
| 3 | 3cn 12201 | . . . 4 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 12195 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11059 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11117 | . . 3 ⊢ ((3 + 2) + 1) = (3 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2757 | . 2 ⊢ (3 + 3) = ((3 + 2) + 1) |
| 8 | df-6 12187 | . . 3 ⊢ 6 = (5 + 1) | |
| 9 | 3p2e5 12266 | . . . 4 ⊢ (3 + 2) = 5 | |
| 10 | 9 | oveq1i 7351 | . . 3 ⊢ ((3 + 2) + 1) = (5 + 1) |
| 11 | 8, 10 | eqtr4i 2757 | . 2 ⊢ 6 = ((3 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2757 | 1 ⊢ (3 + 3) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7341 1c1 11002 + caddc 11004 2c2 12175 3c3 12176 5c5 12178 6c6 12179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11059 ax-addcl 11061 ax-addass 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 |
| This theorem is referenced by: 3t2e6 12281 163prm 17031 631prm 17033 2503prm 17046 binom4 26782 ex-dvds 30428 ex-gcd 30429 kur14lem8 35249 ex-decpmul 42339 3cubeslem3l 42719 gbegt5 47792 gboge9 47795 gbpart6 47797 gbpart9 47800 gbpart11 47801 zlmodzxzequa 48528 ackval3012 48724 ackval41a 48726 |
| Copyright terms: Public domain | W3C validator |