MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3p3e6 Structured version   Visualization version   GIF version

Theorem 3p3e6 12333
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6 (3 + 3) = 6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 12250 . . . 4 3 = (2 + 1)
21oveq2i 7398 . . 3 (3 + 3) = (3 + (2 + 1))
3 3cn 12267 . . . 4 3 ∈ ℂ
4 2cn 12261 . . . 4 2 ∈ ℂ
5 ax-1cn 11126 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11184 . . 3 ((3 + 2) + 1) = (3 + (2 + 1))
72, 6eqtr4i 2755 . 2 (3 + 3) = ((3 + 2) + 1)
8 df-6 12253 . . 3 6 = (5 + 1)
9 3p2e5 12332 . . . 4 (3 + 2) = 5
109oveq1i 7397 . . 3 ((3 + 2) + 1) = (5 + 1)
118, 10eqtr4i 2755 . 2 6 = ((3 + 2) + 1)
127, 11eqtr4i 2755 1 (3 + 3) = 6
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7387  1c1 11069   + caddc 11071  2c2 12241  3c3 12242  5c5 12244  6c6 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11126  ax-addcl 11128  ax-addass 11133
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253
This theorem is referenced by:  3t2e6  12347  163prm  17095  631prm  17097  2503prm  17110  binom4  26760  ex-dvds  30385  ex-gcd  30386  kur14lem8  35200  ex-decpmul  42294  3cubeslem3l  42674  gbegt5  47762  gboge9  47765  gbpart6  47767  gbpart9  47770  gbpart11  47771  zlmodzxzequa  48485  ackval3012  48681  ackval41a  48683
  Copyright terms: Public domain W3C validator