| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p3e6 | Structured version Visualization version GIF version | ||
| Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p3e6 | ⊢ (3 + 3) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12304 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7416 | . . 3 ⊢ (3 + 3) = (3 + (2 + 1)) |
| 3 | 3cn 12321 | . . . 4 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 12315 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11187 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11245 | . . 3 ⊢ ((3 + 2) + 1) = (3 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2761 | . 2 ⊢ (3 + 3) = ((3 + 2) + 1) |
| 8 | df-6 12307 | . . 3 ⊢ 6 = (5 + 1) | |
| 9 | 3p2e5 12391 | . . . 4 ⊢ (3 + 2) = 5 | |
| 10 | 9 | oveq1i 7415 | . . 3 ⊢ ((3 + 2) + 1) = (5 + 1) |
| 11 | 8, 10 | eqtr4i 2761 | . 2 ⊢ 6 = ((3 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2761 | 1 ⊢ (3 + 3) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 1c1 11130 + caddc 11132 2c2 12295 3c3 12296 5c5 12298 6c6 12299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11187 ax-addcl 11189 ax-addass 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 |
| This theorem is referenced by: 3t2e6 12406 163prm 17144 631prm 17146 2503prm 17159 binom4 26812 ex-dvds 30437 ex-gcd 30438 kur14lem8 35235 ex-decpmul 42355 3cubeslem3l 42709 gbegt5 47775 gboge9 47778 gbpart6 47780 gbpart9 47783 gbpart11 47784 zlmodzxzequa 48472 ackval3012 48672 ackval41a 48674 |
| Copyright terms: Public domain | W3C validator |