Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3p3e6 | Structured version Visualization version GIF version |
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3p3e6 | ⊢ (3 + 3) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12087 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7318 | . . 3 ⊢ (3 + 3) = (3 + (2 + 1)) |
3 | 3cn 12104 | . . . 4 ⊢ 3 ∈ ℂ | |
4 | 2cn 12098 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 10979 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 11035 | . . 3 ⊢ ((3 + 2) + 1) = (3 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2767 | . 2 ⊢ (3 + 3) = ((3 + 2) + 1) |
8 | df-6 12090 | . . 3 ⊢ 6 = (5 + 1) | |
9 | 3p2e5 12174 | . . . 4 ⊢ (3 + 2) = 5 | |
10 | 9 | oveq1i 7317 | . . 3 ⊢ ((3 + 2) + 1) = (5 + 1) |
11 | 8, 10 | eqtr4i 2767 | . 2 ⊢ 6 = ((3 + 2) + 1) |
12 | 7, 11 | eqtr4i 2767 | 1 ⊢ (3 + 3) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7307 1c1 10922 + caddc 10924 2c2 12078 3c3 12079 5c5 12081 6c6 12082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-1cn 10979 ax-addcl 10981 ax-addass 10986 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 |
This theorem is referenced by: 3t2e6 12189 163prm 16875 631prm 16877 2503prm 16890 binom4 26049 ex-dvds 28869 ex-gcd 28870 kur14lem8 33224 ex-decpmul 40515 3cubeslem3l 40703 gbegt5 45457 gboge9 45460 gbpart6 45462 gbpart9 45465 gbpart11 45466 zlmodzxzequa 46081 ackval3012 46282 ackval41a 46284 |
Copyright terms: Public domain | W3C validator |