Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3p3e6 | Structured version Visualization version GIF version |
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3p3e6 | ⊢ (3 + 3) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12142 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7352 | . . 3 ⊢ (3 + 3) = (3 + (2 + 1)) |
3 | 3cn 12159 | . . . 4 ⊢ 3 ∈ ℂ | |
4 | 2cn 12153 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 11034 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 11090 | . . 3 ⊢ ((3 + 2) + 1) = (3 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2768 | . 2 ⊢ (3 + 3) = ((3 + 2) + 1) |
8 | df-6 12145 | . . 3 ⊢ 6 = (5 + 1) | |
9 | 3p2e5 12229 | . . . 4 ⊢ (3 + 2) = 5 | |
10 | 9 | oveq1i 7351 | . . 3 ⊢ ((3 + 2) + 1) = (5 + 1) |
11 | 8, 10 | eqtr4i 2768 | . 2 ⊢ 6 = ((3 + 2) + 1) |
12 | 7, 11 | eqtr4i 2768 | 1 ⊢ (3 + 3) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7341 1c1 10977 + caddc 10979 2c2 12133 3c3 12134 5c5 12136 6c6 12137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-1cn 11034 ax-addcl 11036 ax-addass 11041 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-iota 6435 df-fv 6491 df-ov 7344 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 |
This theorem is referenced by: 3t2e6 12244 163prm 16923 631prm 16925 2503prm 16938 binom4 26105 ex-dvds 29107 ex-gcd 29108 kur14lem8 33472 ex-decpmul 40631 3cubeslem3l 40821 gbegt5 45631 gboge9 45634 gbpart6 45636 gbpart9 45639 gbpart11 45640 zlmodzxzequa 46255 ackval3012 46456 ackval41a 46458 |
Copyright terms: Public domain | W3C validator |