Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3p3e6 | Structured version Visualization version GIF version |
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3p3e6 | ⊢ (3 + 3) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12020 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7279 | . . 3 ⊢ (3 + 3) = (3 + (2 + 1)) |
3 | 3cn 12037 | . . . 4 ⊢ 3 ∈ ℂ | |
4 | 2cn 12031 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 10913 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10969 | . . 3 ⊢ ((3 + 2) + 1) = (3 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2770 | . 2 ⊢ (3 + 3) = ((3 + 2) + 1) |
8 | df-6 12023 | . . 3 ⊢ 6 = (5 + 1) | |
9 | 3p2e5 12107 | . . . 4 ⊢ (3 + 2) = 5 | |
10 | 9 | oveq1i 7278 | . . 3 ⊢ ((3 + 2) + 1) = (5 + 1) |
11 | 8, 10 | eqtr4i 2770 | . 2 ⊢ 6 = ((3 + 2) + 1) |
12 | 7, 11 | eqtr4i 2770 | 1 ⊢ (3 + 3) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7268 1c1 10856 + caddc 10858 2c2 12011 3c3 12012 5c5 12014 6c6 12015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-1cn 10913 ax-addcl 10915 ax-addass 10920 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 |
This theorem is referenced by: 3t2e6 12122 163prm 16807 631prm 16809 2503prm 16822 binom4 25981 ex-dvds 28799 ex-gcd 28800 kur14lem8 33154 ex-decpmul 40300 3cubeslem3l 40488 gbegt5 45165 gboge9 45168 gbpart6 45170 gbpart9 45173 gbpart11 45174 zlmodzxzequa 45789 ackval3012 45990 ackval41a 45992 |
Copyright terms: Public domain | W3C validator |