| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p3e6 | Structured version Visualization version GIF version | ||
| Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p3e6 | ⊢ (3 + 3) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12250 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7398 | . . 3 ⊢ (3 + 3) = (3 + (2 + 1)) |
| 3 | 3cn 12267 | . . . 4 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 12261 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11126 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11184 | . . 3 ⊢ ((3 + 2) + 1) = (3 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2755 | . 2 ⊢ (3 + 3) = ((3 + 2) + 1) |
| 8 | df-6 12253 | . . 3 ⊢ 6 = (5 + 1) | |
| 9 | 3p2e5 12332 | . . . 4 ⊢ (3 + 2) = 5 | |
| 10 | 9 | oveq1i 7397 | . . 3 ⊢ ((3 + 2) + 1) = (5 + 1) |
| 11 | 8, 10 | eqtr4i 2755 | . 2 ⊢ 6 = ((3 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2755 | 1 ⊢ (3 + 3) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 2c2 12241 3c3 12242 5c5 12244 6c6 12245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 ax-addass 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 |
| This theorem is referenced by: 3t2e6 12347 163prm 17095 631prm 17097 2503prm 17110 binom4 26760 ex-dvds 30385 ex-gcd 30386 kur14lem8 35200 ex-decpmul 42294 3cubeslem3l 42674 gbegt5 47762 gboge9 47765 gbpart6 47767 gbpart9 47770 gbpart11 47771 zlmodzxzequa 48485 ackval3012 48681 ackval41a 48683 |
| Copyright terms: Public domain | W3C validator |