MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3p3e6 Structured version   Visualization version   GIF version

Theorem 3p3e6 12445
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6 (3 + 3) = 6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 12357 . . . 4 3 = (2 + 1)
21oveq2i 7459 . . 3 (3 + 3) = (3 + (2 + 1))
3 3cn 12374 . . . 4 3 ∈ ℂ
4 2cn 12368 . . . 4 2 ∈ ℂ
5 ax-1cn 11242 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11300 . . 3 ((3 + 2) + 1) = (3 + (2 + 1))
72, 6eqtr4i 2771 . 2 (3 + 3) = ((3 + 2) + 1)
8 df-6 12360 . . 3 6 = (5 + 1)
9 3p2e5 12444 . . . 4 (3 + 2) = 5
109oveq1i 7458 . . 3 ((3 + 2) + 1) = (5 + 1)
118, 10eqtr4i 2771 . 2 6 = ((3 + 2) + 1)
127, 11eqtr4i 2771 1 (3 + 3) = 6
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7448  1c1 11185   + caddc 11187  2c2 12348  3c3 12349  5c5 12351  6c6 12352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-1cn 11242  ax-addcl 11244  ax-addass 11249
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360
This theorem is referenced by:  3t2e6  12459  163prm  17172  631prm  17174  2503prm  17187  binom4  26911  ex-dvds  30488  ex-gcd  30489  kur14lem8  35181  ex-decpmul  42294  3cubeslem3l  42642  gbegt5  47635  gboge9  47638  gbpart6  47640  gbpart9  47643  gbpart11  47644  zlmodzxzequa  48225  ackval3012  48426  ackval41a  48428
  Copyright terms: Public domain W3C validator