MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3p3e6 Structured version   Visualization version   GIF version

Theorem 3p3e6 12275
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6 (3 + 3) = 6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 12192 . . . 4 3 = (2 + 1)
21oveq2i 7360 . . 3 (3 + 3) = (3 + (2 + 1))
3 3cn 12209 . . . 4 3 ∈ ℂ
4 2cn 12203 . . . 4 2 ∈ ℂ
5 ax-1cn 11067 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11125 . . 3 ((3 + 2) + 1) = (3 + (2 + 1))
72, 6eqtr4i 2755 . 2 (3 + 3) = ((3 + 2) + 1)
8 df-6 12195 . . 3 6 = (5 + 1)
9 3p2e5 12274 . . . 4 (3 + 2) = 5
109oveq1i 7359 . . 3 ((3 + 2) + 1) = (5 + 1)
118, 10eqtr4i 2755 . 2 6 = ((3 + 2) + 1)
127, 11eqtr4i 2755 1 (3 + 3) = 6
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7349  1c1 11010   + caddc 11012  2c2 12183  3c3 12184  5c5 12186  6c6 12187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11067  ax-addcl 11069  ax-addass 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195
This theorem is referenced by:  3t2e6  12289  163prm  17036  631prm  17038  2503prm  17051  binom4  26758  ex-dvds  30400  ex-gcd  30401  kur14lem8  35186  ex-decpmul  42279  3cubeslem3l  42659  gbegt5  47745  gboge9  47748  gbpart6  47750  gbpart9  47753  gbpart11  47754  zlmodzxzequa  48481  ackval3012  48677  ackval41a  48679
  Copyright terms: Public domain W3C validator