MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3p3e6 Structured version   Visualization version   GIF version

Theorem 3p3e6 12267
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6 (3 + 3) = 6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 12184 . . . 4 3 = (2 + 1)
21oveq2i 7352 . . 3 (3 + 3) = (3 + (2 + 1))
3 3cn 12201 . . . 4 3 ∈ ℂ
4 2cn 12195 . . . 4 2 ∈ ℂ
5 ax-1cn 11059 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11117 . . 3 ((3 + 2) + 1) = (3 + (2 + 1))
72, 6eqtr4i 2757 . 2 (3 + 3) = ((3 + 2) + 1)
8 df-6 12187 . . 3 6 = (5 + 1)
9 3p2e5 12266 . . . 4 (3 + 2) = 5
109oveq1i 7351 . . 3 ((3 + 2) + 1) = (5 + 1)
118, 10eqtr4i 2757 . 2 6 = ((3 + 2) + 1)
127, 11eqtr4i 2757 1 (3 + 3) = 6
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7341  1c1 11002   + caddc 11004  2c2 12175  3c3 12176  5c5 12178  6c6 12179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-1cn 11059  ax-addcl 11061  ax-addass 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187
This theorem is referenced by:  3t2e6  12281  163prm  17031  631prm  17033  2503prm  17046  binom4  26782  ex-dvds  30428  ex-gcd  30429  kur14lem8  35249  ex-decpmul  42339  3cubeslem3l  42719  gbegt5  47792  gboge9  47795  gbpart6  47797  gbpart9  47800  gbpart11  47801  zlmodzxzequa  48528  ackval3012  48724  ackval41a  48726
  Copyright terms: Public domain W3C validator