Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-6 | Structured version Visualization version GIF version |
Description: Define the number 6. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-6 | ⊢ 6 = (5 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c6 12032 | . 2 class 6 | |
2 | c5 12031 | . . 3 class 5 | |
3 | c1 10872 | . . 3 class 1 | |
4 | caddc 10874 | . . 3 class + | |
5 | 2, 3, 4 | co 7275 | . 2 class (5 + 1) |
6 | 1, 5 | wceq 1539 | 1 wff 6 = (5 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 6nn 12062 6re 12063 6cn 12064 6pos 12083 6m1e5 12104 5p1e6 12120 3p3e6 12125 4p2e6 12126 5p2e7 12129 5lt6 12154 6p6e12 12511 7p6e13 12515 8p6e14 12521 8p8e16 12523 9p6e15 12528 9p7e16 12529 6t6e36 12545 7t6e42 12550 8t6e48 12556 9t6e54 12563 lt6abl 19496 ppiublem1 26350 ppiublem2 26351 ppiub 26352 bposlem8 26439 lgsdir2lem3 26475 2lgsoddprmlem3d 26561 aks4d1p1p5 40083 rmydioph 40836 expdiophlem2 40844 stgoldbwt 45228 sbgoldbm 45236 |
Copyright terms: Public domain | W3C validator |