Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-6 | Structured version Visualization version GIF version |
Description: Define the number 6. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-6 | ⊢ 6 = (5 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c6 11937 | . 2 class 6 | |
2 | c5 11936 | . . 3 class 5 | |
3 | c1 10778 | . . 3 class 1 | |
4 | caddc 10780 | . . 3 class + | |
5 | 2, 3, 4 | co 7252 | . 2 class (5 + 1) |
6 | 1, 5 | wceq 1543 | 1 wff 6 = (5 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 6nn 11967 6re 11968 6cn 11969 6pos 11988 6m1e5 12009 5p1e6 12025 3p3e6 12030 4p2e6 12031 5p2e7 12034 5lt6 12059 6p6e12 12415 7p6e13 12419 8p6e14 12425 8p8e16 12427 9p6e15 12432 9p7e16 12433 6t6e36 12449 7t6e42 12454 8t6e48 12460 9t6e54 12467 lt6abl 19386 ppiublem1 26230 ppiublem2 26231 ppiub 26232 bposlem8 26319 lgsdir2lem3 26355 2lgsoddprmlem3d 26441 aks4d1p1p5 39989 rmydioph 40724 expdiophlem2 40732 stgoldbwt 45089 sbgoldbm 45097 |
Copyright terms: Public domain | W3C validator |