![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-6 | Structured version Visualization version GIF version |
Description: Define the number 6. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-6 | ⊢ 6 = (5 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c6 12271 | . 2 class 6 | |
2 | c5 12270 | . . 3 class 5 | |
3 | c1 11111 | . . 3 class 1 | |
4 | caddc 11113 | . . 3 class + | |
5 | 2, 3, 4 | co 7409 | . 2 class (5 + 1) |
6 | 1, 5 | wceq 1542 | 1 wff 6 = (5 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 6nn 12301 6re 12302 6cn 12303 6pos 12322 6m1e5 12343 5p1e6 12359 3p3e6 12364 4p2e6 12365 5p2e7 12368 5lt6 12393 6p6e12 12751 7p6e13 12755 8p6e14 12761 8p8e16 12763 9p6e15 12768 9p7e16 12769 6t6e36 12785 7t6e42 12790 8t6e48 12796 9t6e54 12803 lt6abl 19763 ppiublem1 26705 ppiublem2 26706 ppiub 26707 bposlem8 26794 lgsdir2lem3 26830 2lgsoddprmlem3d 26916 aks4d1p1p5 40940 rmydioph 41753 expdiophlem2 41761 stgoldbwt 46444 sbgoldbm 46452 |
Copyright terms: Public domain | W3C validator |