Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-6 | Structured version Visualization version GIF version |
Description: Define the number 6. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-6 | ⊢ 6 = (5 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c6 12030 | . 2 class 6 | |
2 | c5 12029 | . . 3 class 5 | |
3 | c1 10871 | . . 3 class 1 | |
4 | caddc 10873 | . . 3 class + | |
5 | 2, 3, 4 | co 7269 | . 2 class (5 + 1) |
6 | 1, 5 | wceq 1542 | 1 wff 6 = (5 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 6nn 12060 6re 12061 6cn 12062 6pos 12081 6m1e5 12102 5p1e6 12118 3p3e6 12123 4p2e6 12124 5p2e7 12127 5lt6 12152 6p6e12 12508 7p6e13 12512 8p6e14 12518 8p8e16 12520 9p6e15 12525 9p7e16 12526 6t6e36 12542 7t6e42 12547 8t6e48 12553 9t6e54 12560 lt6abl 19492 ppiublem1 26346 ppiublem2 26347 ppiub 26348 bposlem8 26435 lgsdir2lem3 26471 2lgsoddprmlem3d 26557 aks4d1p1p5 40078 rmydioph 40831 expdiophlem2 40839 stgoldbwt 45195 sbgoldbm 45203 |
Copyright terms: Public domain | W3C validator |