![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-6 | Structured version Visualization version GIF version |
Description: Define the number 6. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-6 | ⊢ 6 = (5 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c6 12352 | . 2 class 6 | |
2 | c5 12351 | . . 3 class 5 | |
3 | c1 11185 | . . 3 class 1 | |
4 | caddc 11187 | . . 3 class + | |
5 | 2, 3, 4 | co 7448 | . 2 class (5 + 1) |
6 | 1, 5 | wceq 1537 | 1 wff 6 = (5 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 6nn 12382 6re 12383 6cn 12384 6pos 12403 6m1e5 12424 5p1e6 12440 3p3e6 12445 4p2e6 12446 5p2e7 12449 5lt6 12474 6p6e12 12832 7p6e13 12836 8p6e14 12842 8p8e16 12844 9p6e15 12849 9p7e16 12850 6t6e36 12866 7t6e42 12871 8t6e48 12877 9t6e54 12884 lt6abl 19937 ppiublem1 27264 ppiublem2 27265 ppiub 27266 bposlem8 27353 lgsdir2lem3 27389 2lgsoddprmlem3d 27475 aks4d1p1p5 42032 rmydioph 42971 expdiophlem2 42979 stgoldbwt 47650 sbgoldbm 47658 |
Copyright terms: Public domain | W3C validator |