| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-6 | Structured version Visualization version GIF version | ||
| Description: Define the number 6. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| df-6 | ⊢ 6 = (5 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c6 12297 | . 2 class 6 | |
| 2 | c5 12296 | . . 3 class 5 | |
| 3 | c1 11128 | . . 3 class 1 | |
| 4 | caddc 11130 | . . 3 class + | |
| 5 | 2, 3, 4 | co 7403 | . 2 class (5 + 1) |
| 6 | 1, 5 | wceq 1540 | 1 wff 6 = (5 + 1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 6nn 12327 6re 12328 6cn 12329 6pos 12348 6m1e5 12369 5p1e6 12385 3p3e6 12390 4p2e6 12391 5p2e7 12394 5lt6 12419 6p6e12 12780 7p6e13 12784 8p6e14 12790 8p8e16 12792 9p6e15 12797 9p7e16 12798 6t6e36 12814 7t6e42 12819 8t6e48 12825 9t6e54 12832 lt6abl 19874 ppiublem1 27163 ppiublem2 27164 ppiub 27165 bposlem8 27252 lgsdir2lem3 27288 2lgsoddprmlem3d 27374 aks4d1p1p5 42034 rmydioph 42985 expdiophlem2 42993 ceil5half3 47317 stgoldbwt 47738 sbgoldbm 47746 |
| Copyright terms: Public domain | W3C validator |