Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-5 | Structured version Visualization version GIF version |
Description: Define the number 5. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-5 | ⊢ 5 = (4 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c5 12031 | . 2 class 5 | |
2 | c4 12030 | . . 3 class 4 | |
3 | c1 10872 | . . 3 class 1 | |
4 | caddc 10874 | . . 3 class + | |
5 | 2, 3, 4 | co 7275 | . 2 class (4 + 1) |
6 | 1, 5 | wceq 1539 | 1 wff 5 = (4 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 5nn 12059 5re 12060 5cn 12061 5pos 12082 5m1e4 12103 4p1e5 12119 3p2e5 12124 4p2e6 12126 4lt5 12150 5p5e10 12508 6p5e11 12510 7p5e12 12514 8p5e13 12520 8p7e15 12522 9p5e14 12527 9p6e15 12528 5t5e25 12540 6t5e30 12544 7t5e35 12549 8t5e40 12555 9t5e45 12562 fldiv4p1lem1div2 13555 ef01bndlem 15893 prm23lt5 16515 5prm 16810 lt6abl 19496 log2ublem3 26098 ppiublem2 26351 bclbnd 26428 bposlem6 26437 bposlem9 26440 lgsdir2lem3 26475 2lgslem3c 26546 2lgsoddprmlem3c 26560 ex-exp 28814 ex-fac 28815 ex-bc 28816 3lexlogpow5ineq5 40068 aks4d1p1p7 40082 rmydioph 40836 expdiophlem2 40844 stoweidlem13 43554 fmtno5 45009 fmtnofac1 45022 31prm 45049 5odd 45162 sbgoldbo 45239 ackval50 46044 |
Copyright terms: Public domain | W3C validator |