| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-5 | Structured version Visualization version GIF version | ||
| Description: Define the number 5. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| df-5 | ⊢ 5 = (4 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c5 12244 | . 2 class 5 | |
| 2 | c4 12243 | . . 3 class 4 | |
| 3 | c1 11069 | . . 3 class 1 | |
| 4 | caddc 11071 | . . 3 class + | |
| 5 | 2, 3, 4 | co 7387 | . 2 class (4 + 1) |
| 6 | 1, 5 | wceq 1540 | 1 wff 5 = (4 + 1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 5nn 12272 5re 12273 5cn 12274 5pos 12295 5m1e4 12311 4p1e5 12327 3p2e5 12332 4p2e6 12334 4lt5 12358 5p5e10 12720 6p5e11 12722 7p5e12 12726 8p5e13 12732 8p7e15 12734 9p5e14 12739 9p6e15 12740 5t5e25 12752 6t5e30 12756 7t5e35 12761 8t5e40 12767 9t5e45 12774 fldiv4p1lem1div2 13797 ef01bndlem 16152 prm23lt5 16785 5prm 17079 lt6abl 19825 log2ublem3 26858 ppiublem2 27114 bclbnd 27191 bposlem6 27200 bposlem9 27203 lgsdir2lem3 27238 2lgslem3c 27309 2lgsoddprmlem3c 27323 ex-exp 30379 ex-fac 30380 ex-bc 30381 3lexlogpow5ineq5 42048 aks4d1p1p7 42062 rmydioph 43003 expdiophlem2 43011 stoweidlem13 46011 fmtno5 47555 fmtnofac1 47568 31prm 47595 5odd 47708 sbgoldbo 47785 gpgprismgr4cycllem7 48088 gpgprismgr4cycllem9 48090 ackval50 48684 |
| Copyright terms: Public domain | W3C validator |