![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-5 | Structured version Visualization version GIF version |
Description: Define the number 5. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-5 | ⊢ 5 = (4 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c5 11437 | . 2 class 5 | |
2 | c4 11436 | . . 3 class 4 | |
3 | c1 10275 | . . 3 class 1 | |
4 | caddc 10277 | . . 3 class + | |
5 | 2, 3, 4 | co 6924 | . 2 class (4 + 1) |
6 | 1, 5 | wceq 1601 | 1 wff 5 = (4 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 5nn 11467 5re 11468 5cn 11469 5pos 11495 5m1e4 11516 4p1e5 11532 3p2e5 11537 4p2e6 11539 4lt5 11563 5p5e10 11922 6p5e11 11924 7p5e12 11928 8p5e13 11934 8p7e15 11936 9p5e14 11941 9p6e15 11942 5t5e25 11954 6t5e30 11958 7t5e35 11963 8t5e40 11969 9t5e45 11976 fldiv4p1lem1div2 12959 ef01bndlem 15320 prm23lt5 15927 5prm 16218 lt6abl 18686 log2ublem3 25131 ppiublem2 25384 bclbnd 25461 bposlem6 25470 bposlem9 25473 lgsdir2lem3 25508 2lgslem3c 25579 2lgsoddprmlem3c 25593 ex-exp 27886 ex-fac 27887 ex-bc 27888 rmydioph 38550 expdiophlem2 38558 stoweidlem13 41167 fmtno5 42500 fmtnofac1 42513 31prm 42543 5odd 42654 sbgoldbo 42710 |
Copyright terms: Public domain | W3C validator |