Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-5 | Structured version Visualization version GIF version |
Description: Define the number 5. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-5 | ⊢ 5 = (4 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c5 12014 | . 2 class 5 | |
2 | c4 12013 | . . 3 class 4 | |
3 | c1 10856 | . . 3 class 1 | |
4 | caddc 10858 | . . 3 class + | |
5 | 2, 3, 4 | co 7268 | . 2 class (4 + 1) |
6 | 1, 5 | wceq 1541 | 1 wff 5 = (4 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 5nn 12042 5re 12043 5cn 12044 5pos 12065 5m1e4 12086 4p1e5 12102 3p2e5 12107 4p2e6 12109 4lt5 12133 5p5e10 12490 6p5e11 12492 7p5e12 12496 8p5e13 12502 8p7e15 12504 9p5e14 12509 9p6e15 12510 5t5e25 12522 6t5e30 12526 7t5e35 12531 8t5e40 12537 9t5e45 12544 fldiv4p1lem1div2 13536 ef01bndlem 15874 prm23lt5 16496 5prm 16791 lt6abl 19477 log2ublem3 26079 ppiublem2 26332 bclbnd 26409 bposlem6 26418 bposlem9 26421 lgsdir2lem3 26456 2lgslem3c 26527 2lgsoddprmlem3c 26541 ex-exp 28793 ex-fac 28794 ex-bc 28795 3lexlogpow5ineq5 40048 aks4d1p1p7 40062 rmydioph 40816 expdiophlem2 40824 stoweidlem13 43508 fmtno5 44961 fmtnofac1 44974 31prm 45001 5odd 45114 sbgoldbo 45191 ackval50 45996 |
Copyright terms: Public domain | W3C validator |