| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-5 | Structured version Visualization version GIF version | ||
| Description: Define the number 5. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| df-5 | ⊢ 5 = (4 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c5 12296 | . 2 class 5 | |
| 2 | c4 12295 | . . 3 class 4 | |
| 3 | c1 11128 | . . 3 class 1 | |
| 4 | caddc 11130 | . . 3 class + | |
| 5 | 2, 3, 4 | co 7403 | . 2 class (4 + 1) |
| 6 | 1, 5 | wceq 1540 | 1 wff 5 = (4 + 1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 5nn 12324 5re 12325 5cn 12326 5pos 12347 5m1e4 12368 4p1e5 12384 3p2e5 12389 4p2e6 12391 4lt5 12415 5p5e10 12777 6p5e11 12779 7p5e12 12783 8p5e13 12789 8p7e15 12791 9p5e14 12796 9p6e15 12797 5t5e25 12809 6t5e30 12813 7t5e35 12818 8t5e40 12824 9t5e45 12831 fldiv4p1lem1div2 13850 ef01bndlem 16200 prm23lt5 16832 5prm 17126 lt6abl 19874 log2ublem3 26908 ppiublem2 27164 bclbnd 27241 bposlem6 27250 bposlem9 27253 lgsdir2lem3 27288 2lgslem3c 27359 2lgsoddprmlem3c 27373 ex-exp 30377 ex-fac 30378 ex-bc 30379 3lexlogpow5ineq5 42019 aks4d1p1p7 42033 rmydioph 42985 expdiophlem2 42993 stoweidlem13 45990 fmtno5 47519 fmtnofac1 47532 31prm 47559 5odd 47672 sbgoldbo 47749 gpgprismgr4cycllem7 48048 gpgprismgr4cycllem9 48050 ackval50 48626 |
| Copyright terms: Public domain | W3C validator |