![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-5 | Structured version Visualization version GIF version |
Description: Define the number 5. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-5 | ⊢ 5 = (4 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c5 12351 | . 2 class 5 | |
2 | c4 12350 | . . 3 class 4 | |
3 | c1 11185 | . . 3 class 1 | |
4 | caddc 11187 | . . 3 class + | |
5 | 2, 3, 4 | co 7448 | . 2 class (4 + 1) |
6 | 1, 5 | wceq 1537 | 1 wff 5 = (4 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 5nn 12379 5re 12380 5cn 12381 5pos 12402 5m1e4 12423 4p1e5 12439 3p2e5 12444 4p2e6 12446 4lt5 12470 5p5e10 12829 6p5e11 12831 7p5e12 12835 8p5e13 12841 8p7e15 12843 9p5e14 12848 9p6e15 12849 5t5e25 12861 6t5e30 12865 7t5e35 12870 8t5e40 12876 9t5e45 12883 fldiv4p1lem1div2 13886 ef01bndlem 16232 prm23lt5 16861 5prm 17156 lt6abl 19937 log2ublem3 27009 ppiublem2 27265 bclbnd 27342 bposlem6 27351 bposlem9 27354 lgsdir2lem3 27389 2lgslem3c 27460 2lgsoddprmlem3c 27474 ex-exp 30482 ex-fac 30483 ex-bc 30484 3lexlogpow5ineq5 42017 aks4d1p1p7 42031 rmydioph 42971 expdiophlem2 42979 stoweidlem13 45934 fmtno5 47431 fmtnofac1 47444 31prm 47471 5odd 47584 sbgoldbo 47661 ackval50 48432 |
Copyright terms: Public domain | W3C validator |