| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-5 | Structured version Visualization version GIF version | ||
| Description: Define the number 5. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| df-5 | ⊢ 5 = (4 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c5 12183 | . 2 class 5 | |
| 2 | c4 12182 | . . 3 class 4 | |
| 3 | c1 11007 | . . 3 class 1 | |
| 4 | caddc 11009 | . . 3 class + | |
| 5 | 2, 3, 4 | co 7346 | . 2 class (4 + 1) |
| 6 | 1, 5 | wceq 1541 | 1 wff 5 = (4 + 1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 5nn 12211 5re 12212 5cn 12213 5pos 12234 5m1e4 12250 4p1e5 12266 3p2e5 12271 4p2e6 12273 4lt5 12297 5p5e10 12659 6p5e11 12661 7p5e12 12665 8p5e13 12671 8p7e15 12673 9p5e14 12678 9p6e15 12679 5t5e25 12691 6t5e30 12695 7t5e35 12700 8t5e40 12706 9t5e45 12713 fldiv4p1lem1div2 13739 ef01bndlem 16093 prm23lt5 16726 5prm 17020 lt6abl 19807 log2ublem3 26885 ppiublem2 27141 bclbnd 27218 bposlem6 27227 bposlem9 27230 lgsdir2lem3 27265 2lgslem3c 27336 2lgsoddprmlem3c 27350 ex-exp 30430 ex-fac 30431 ex-bc 30432 3lexlogpow5ineq5 42163 aks4d1p1p7 42177 rmydioph 43117 expdiophlem2 43125 stoweidlem13 46121 fmtno5 47667 fmtnofac1 47680 31prm 47707 5odd 47820 sbgoldbo 47897 gpgprismgr4cycllem7 48211 gpgprismgr4cycllem9 48213 ackval50 48809 |
| Copyright terms: Public domain | W3C validator |