| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-5 | Structured version Visualization version GIF version | ||
| Description: Define the number 5. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| df-5 | ⊢ 5 = (4 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c5 12186 | . 2 class 5 | |
| 2 | c4 12185 | . . 3 class 4 | |
| 3 | c1 11010 | . . 3 class 1 | |
| 4 | caddc 11012 | . . 3 class + | |
| 5 | 2, 3, 4 | co 7349 | . 2 class (4 + 1) |
| 6 | 1, 5 | wceq 1540 | 1 wff 5 = (4 + 1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 5nn 12214 5re 12215 5cn 12216 5pos 12237 5m1e4 12253 4p1e5 12269 3p2e5 12274 4p2e6 12276 4lt5 12300 5p5e10 12662 6p5e11 12664 7p5e12 12668 8p5e13 12674 8p7e15 12676 9p5e14 12681 9p6e15 12682 5t5e25 12694 6t5e30 12698 7t5e35 12703 8t5e40 12709 9t5e45 12716 fldiv4p1lem1div2 13739 ef01bndlem 16093 prm23lt5 16726 5prm 17020 lt6abl 19774 log2ublem3 26856 ppiublem2 27112 bclbnd 27189 bposlem6 27198 bposlem9 27201 lgsdir2lem3 27236 2lgslem3c 27307 2lgsoddprmlem3c 27321 ex-exp 30394 ex-fac 30395 ex-bc 30396 3lexlogpow5ineq5 42043 aks4d1p1p7 42057 rmydioph 42997 expdiophlem2 43005 stoweidlem13 46004 fmtno5 47551 fmtnofac1 47564 31prm 47591 5odd 47704 sbgoldbo 47781 gpgprismgr4cycllem7 48095 gpgprismgr4cycllem9 48097 ackval50 48693 |
| Copyright terms: Public domain | W3C validator |