Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-5 | Structured version Visualization version GIF version |
Description: Define the number 5. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-5 | ⊢ 5 = (4 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c5 11936 | . 2 class 5 | |
2 | c4 11935 | . . 3 class 4 | |
3 | c1 10778 | . . 3 class 1 | |
4 | caddc 10780 | . . 3 class + | |
5 | 2, 3, 4 | co 7252 | . 2 class (4 + 1) |
6 | 1, 5 | wceq 1543 | 1 wff 5 = (4 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 5nn 11964 5re 11965 5cn 11966 5pos 11987 5m1e4 12008 4p1e5 12024 3p2e5 12029 4p2e6 12031 4lt5 12055 5p5e10 12412 6p5e11 12414 7p5e12 12418 8p5e13 12424 8p7e15 12426 9p5e14 12431 9p6e15 12432 5t5e25 12444 6t5e30 12448 7t5e35 12453 8t5e40 12459 9t5e45 12466 fldiv4p1lem1div2 13458 ef01bndlem 15796 prm23lt5 16418 5prm 16713 lt6abl 19386 log2ublem3 25978 ppiublem2 26231 bclbnd 26308 bposlem6 26317 bposlem9 26320 lgsdir2lem3 26355 2lgslem3c 26426 2lgsoddprmlem3c 26440 ex-exp 28690 ex-fac 28691 ex-bc 28692 3lexlogpow5ineq5 39975 aks4d1p1p7 39988 rmydioph 40724 expdiophlem2 40732 stoweidlem13 43417 fmtno5 44870 fmtnofac1 44883 31prm 44910 5odd 45023 sbgoldbo 45100 ackval50 45905 |
Copyright terms: Public domain | W3C validator |