![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-5 | Structured version Visualization version GIF version |
Description: Define the number 5. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-5 | ⊢ 5 = (4 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c5 12270 | . 2 class 5 | |
2 | c4 12269 | . . 3 class 4 | |
3 | c1 11111 | . . 3 class 1 | |
4 | caddc 11113 | . . 3 class + | |
5 | 2, 3, 4 | co 7409 | . 2 class (4 + 1) |
6 | 1, 5 | wceq 1542 | 1 wff 5 = (4 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 5nn 12298 5re 12299 5cn 12300 5pos 12321 5m1e4 12342 4p1e5 12358 3p2e5 12363 4p2e6 12365 4lt5 12389 5p5e10 12748 6p5e11 12750 7p5e12 12754 8p5e13 12760 8p7e15 12762 9p5e14 12767 9p6e15 12768 5t5e25 12780 6t5e30 12784 7t5e35 12789 8t5e40 12795 9t5e45 12802 fldiv4p1lem1div2 13800 ef01bndlem 16127 prm23lt5 16747 5prm 17042 lt6abl 19763 log2ublem3 26453 ppiublem2 26706 bclbnd 26783 bposlem6 26792 bposlem9 26795 lgsdir2lem3 26830 2lgslem3c 26901 2lgsoddprmlem3c 26915 ex-exp 29703 ex-fac 29704 ex-bc 29705 3lexlogpow5ineq5 40925 aks4d1p1p7 40939 rmydioph 41753 expdiophlem2 41761 stoweidlem13 44729 fmtno5 46225 fmtnofac1 46238 31prm 46265 5odd 46378 sbgoldbo 46455 ackval50 47384 |
Copyright terms: Public domain | W3C validator |