![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version |
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8547 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2p2e4 | ⊢ (2 + 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12282 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7423 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
3 | df-4 12284 | . . 3 ⊢ 4 = (3 + 1) | |
4 | df-3 12283 | . . . 4 ⊢ 3 = (2 + 1) | |
5 | 4 | oveq1i 7422 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
6 | 2cn 12294 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | ax-1cn 11174 | . . . 4 ⊢ 1 ∈ ℂ | |
8 | 6, 7, 7 | addassi 11231 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
9 | 3, 5, 8 | 3eqtri 2763 | . 2 ⊢ 4 = (2 + (1 + 1)) |
10 | 2, 9 | eqtr4i 2762 | 1 ⊢ (2 + 2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 (class class class)co 7412 1c1 11117 + caddc 11119 2c2 12274 3c3 12275 4c4 12276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-1cn 11174 ax-addcl 11176 ax-addass 11181 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-2 12282 df-3 12283 df-4 12284 |
This theorem is referenced by: 2t2e4 12383 i4 14175 4bc2eq6 14296 bpoly4 16010 fsumcube 16011 ef01bndlem 16134 6gcd4e2 16487 pythagtriplem1 16756 prmlem2 17060 43prm 17062 1259lem4 17074 2503lem1 17077 2503lem2 17078 2503lem3 17079 4001lem1 17081 4001lem4 17084 cphipval2 25089 quart1lem 26701 log2ub 26795 hgt750lem2 34128 3lexlogpow5ineq1 41386 3lexlogpow5ineq5 41392 3cubeslem3l 41887 3cubeslem3r 41888 wallispi2lem1 45246 stirlinglem8 45256 sqwvfourb 45404 fmtnorec4 46676 m11nprm 46728 3exp4mod41 46743 gbowgt5 46889 gbpart7 46894 sbgoldbaltlem1 46906 sbgoldbalt 46908 sgoldbeven3prm 46910 mogoldbb 46912 nnsum3primes4 46915 2t6m3t4e0 47187 ackval1012 47538 2p2ne5 48007 |
Copyright terms: Public domain | W3C validator |