| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version | ||
| Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8551 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2p2e4 | ⊢ (2 + 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12301 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7414 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
| 3 | df-4 12303 | . . 3 ⊢ 4 = (3 + 1) | |
| 4 | df-3 12302 | . . . 4 ⊢ 3 = (2 + 1) | |
| 5 | 4 | oveq1i 7413 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
| 6 | 2cn 12313 | . . . 4 ⊢ 2 ∈ ℂ | |
| 7 | ax-1cn 11185 | . . . 4 ⊢ 1 ∈ ℂ | |
| 8 | 6, 7, 7 | addassi 11243 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
| 9 | 3, 5, 8 | 3eqtri 2762 | . 2 ⊢ 4 = (2 + (1 + 1)) |
| 10 | 2, 9 | eqtr4i 2761 | 1 ⊢ (2 + 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7403 1c1 11128 + caddc 11130 2c2 12293 3c3 12294 4c4 12295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11185 ax-addcl 11187 ax-addass 11192 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-2 12301 df-3 12302 df-4 12303 |
| This theorem is referenced by: 2t2e4 12402 i4 14220 4bc2eq6 14345 bpoly4 16073 fsumcube 16074 ef01bndlem 16200 6gcd4e2 16555 pythagtriplem1 16834 prmlem2 17137 43prm 17139 1259lem4 17151 2503lem1 17154 2503lem2 17155 2503lem3 17156 4001lem1 17158 4001lem4 17161 cphipval2 25191 quart1lem 26815 log2ub 26909 hgt750lem2 34630 3lexlogpow5ineq1 42013 3lexlogpow5ineq5 42019 3cubeslem3l 42656 3cubeslem3r 42657 wallispi2lem1 46048 stirlinglem8 46058 sqwvfourb 46206 fmtnorec4 47511 m11nprm 47563 3exp4mod41 47578 gbowgt5 47724 gbpart7 47729 sbgoldbaltlem1 47741 sbgoldbalt 47743 sgoldbeven3prm 47745 mogoldbb 47747 nnsum3primes4 47750 2t6m3t4e0 48271 ackval1012 48618 2p2ne5 49610 |
| Copyright terms: Public domain | W3C validator |