![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version |
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8566 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2p2e4 | ⊢ (2 + 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12311 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7435 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
3 | df-4 12313 | . . 3 ⊢ 4 = (3 + 1) | |
4 | df-3 12312 | . . . 4 ⊢ 3 = (2 + 1) | |
5 | 4 | oveq1i 7434 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
6 | 2cn 12323 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | ax-1cn 11202 | . . . 4 ⊢ 1 ∈ ℂ | |
8 | 6, 7, 7 | addassi 11260 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
9 | 3, 5, 8 | 3eqtri 2759 | . 2 ⊢ 4 = (2 + (1 + 1)) |
10 | 2, 9 | eqtr4i 2758 | 1 ⊢ (2 + 2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7424 1c1 11145 + caddc 11147 2c2 12303 3c3 12304 4c4 12305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-1cn 11202 ax-addcl 11204 ax-addass 11209 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-iota 6503 df-fv 6559 df-ov 7427 df-2 12311 df-3 12312 df-4 12313 |
This theorem is referenced by: 2t2e4 12412 i4 14205 4bc2eq6 14326 bpoly4 16041 fsumcube 16042 ef01bndlem 16166 6gcd4e2 16519 pythagtriplem1 16790 prmlem2 17094 43prm 17096 1259lem4 17108 2503lem1 17111 2503lem2 17112 2503lem3 17113 4001lem1 17115 4001lem4 17118 cphipval2 25187 quart1lem 26805 log2ub 26899 hgt750lem2 34289 3lexlogpow5ineq1 41529 3lexlogpow5ineq5 41535 3cubeslem3l 42109 3cubeslem3r 42110 wallispi2lem1 45461 stirlinglem8 45471 sqwvfourb 45619 fmtnorec4 46891 m11nprm 46943 3exp4mod41 46958 gbowgt5 47104 gbpart7 47109 sbgoldbaltlem1 47121 sbgoldbalt 47123 sgoldbeven3prm 47125 mogoldbb 47127 nnsum3primes4 47130 2t6m3t4e0 47463 ackval1012 47814 2p2ne5 48282 |
Copyright terms: Public domain | W3C validator |