Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version |
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8310 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2p2e4 | ⊢ (2 + 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11941 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7263 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
3 | df-4 11943 | . . 3 ⊢ 4 = (3 + 1) | |
4 | df-3 11942 | . . . 4 ⊢ 3 = (2 + 1) | |
5 | 4 | oveq1i 7262 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
6 | 2cn 11953 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | ax-1cn 10835 | . . . 4 ⊢ 1 ∈ ℂ | |
8 | 6, 7, 7 | addassi 10891 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
9 | 3, 5, 8 | 3eqtri 2771 | . 2 ⊢ 4 = (2 + (1 + 1)) |
10 | 2, 9 | eqtr4i 2770 | 1 ⊢ (2 + 2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 (class class class)co 7252 1c1 10778 + caddc 10780 2c2 11933 3c3 11934 4c4 11935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-1cn 10835 ax-addcl 10837 ax-addass 10842 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 df-ov 7255 df-2 11941 df-3 11942 df-4 11943 |
This theorem is referenced by: 2t2e4 12042 i4 13824 4bc2eq6 13946 bpoly4 15672 fsumcube 15673 ef01bndlem 15796 6gcd4e2 16149 pythagtriplem1 16420 prmlem2 16724 43prm 16726 1259lem4 16738 2503lem1 16741 2503lem2 16742 2503lem3 16743 4001lem1 16745 4001lem4 16748 cphipval2 24285 quart1lem 25885 log2ub 25979 hgt750lem2 32507 3lexlogpow5ineq1 39969 3lexlogpow5ineq5 39975 3cubeslem3l 40396 3cubeslem3r 40397 wallispi2lem1 43475 stirlinglem8 43485 sqwvfourb 43633 fmtnorec4 44862 m11nprm 44914 3exp4mod41 44929 gbowgt5 45075 gbpart7 45080 sbgoldbaltlem1 45092 sbgoldbalt 45094 sgoldbeven3prm 45096 mogoldbb 45098 nnsum3primes4 45101 2t6m3t4e0 45545 ackval1012 45897 2p2ne5 46361 |
Copyright terms: Public domain | W3C validator |