| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version | ||
| Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8456 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2p2e4 | ⊢ (2 + 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12188 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7357 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
| 3 | df-4 12190 | . . 3 ⊢ 4 = (3 + 1) | |
| 4 | df-3 12189 | . . . 4 ⊢ 3 = (2 + 1) | |
| 5 | 4 | oveq1i 7356 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
| 6 | 2cn 12200 | . . . 4 ⊢ 2 ∈ ℂ | |
| 7 | ax-1cn 11064 | . . . 4 ⊢ 1 ∈ ℂ | |
| 8 | 6, 7, 7 | addassi 11122 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
| 9 | 3, 5, 8 | 3eqtri 2758 | . 2 ⊢ 4 = (2 + (1 + 1)) |
| 10 | 2, 9 | eqtr4i 2757 | 1 ⊢ (2 + 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 2c2 12180 3c3 12181 4c4 12182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-addcl 11066 ax-addass 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 |
| This theorem is referenced by: 2t2e4 12284 i4 14111 4bc2eq6 14236 bpoly4 15966 fsumcube 15967 ef01bndlem 16093 6gcd4e2 16449 pythagtriplem1 16728 prmlem2 17031 43prm 17033 1259lem4 17045 2503lem1 17048 2503lem2 17049 2503lem3 17050 4001lem1 17052 4001lem4 17055 cphipval2 25168 quart1lem 26792 log2ub 26886 hgt750lem2 34665 3lexlogpow5ineq1 42095 3lexlogpow5ineq5 42101 3cubeslem3l 42727 3cubeslem3r 42728 wallispi2lem1 46117 stirlinglem8 46127 sqwvfourb 46275 fmtnorec4 47588 m11nprm 47640 3exp4mod41 47655 gbowgt5 47801 gbpart7 47806 sbgoldbaltlem1 47818 sbgoldbalt 47820 sgoldbeven3prm 47822 mogoldbb 47824 nnsum3primes4 47827 pgnbgreunbgrlem2lem3 48155 2t6m3t4e0 48387 ackval1012 48730 2p2ne5 49838 |
| Copyright terms: Public domain | W3C validator |