| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version | ||
| Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8459 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2p2e4 | ⊢ (2 + 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12191 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7360 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
| 3 | df-4 12193 | . . 3 ⊢ 4 = (3 + 1) | |
| 4 | df-3 12192 | . . . 4 ⊢ 3 = (2 + 1) | |
| 5 | 4 | oveq1i 7359 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
| 6 | 2cn 12203 | . . . 4 ⊢ 2 ∈ ℂ | |
| 7 | ax-1cn 11067 | . . . 4 ⊢ 1 ∈ ℂ | |
| 8 | 6, 7, 7 | addassi 11125 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
| 9 | 3, 5, 8 | 3eqtri 2756 | . 2 ⊢ 4 = (2 + (1 + 1)) |
| 10 | 2, 9 | eqtr4i 2755 | 1 ⊢ (2 + 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 2c2 12183 3c3 12184 4c4 12185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-addcl 11069 ax-addass 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 df-4 12193 |
| This theorem is referenced by: 2t2e4 12287 i4 14111 4bc2eq6 14236 bpoly4 15966 fsumcube 15967 ef01bndlem 16093 6gcd4e2 16449 pythagtriplem1 16728 prmlem2 17031 43prm 17033 1259lem4 17045 2503lem1 17048 2503lem2 17049 2503lem3 17050 4001lem1 17052 4001lem4 17055 cphipval2 25139 quart1lem 26763 log2ub 26857 hgt750lem2 34620 3lexlogpow5ineq1 42027 3lexlogpow5ineq5 42033 3cubeslem3l 42659 3cubeslem3r 42660 wallispi2lem1 46052 stirlinglem8 46062 sqwvfourb 46210 fmtnorec4 47533 m11nprm 47585 3exp4mod41 47600 gbowgt5 47746 gbpart7 47751 sbgoldbaltlem1 47763 sbgoldbalt 47765 sgoldbeven3prm 47767 mogoldbb 47769 nnsum3primes4 47772 pgnbgreunbgrlem2lem3 48100 2t6m3t4e0 48332 ackval1012 48675 2p2ne5 49783 |
| Copyright terms: Public domain | W3C validator |