| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version | ||
| Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8507 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2p2e4 | ⊢ (2 + 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12250 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7400 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
| 3 | df-4 12252 | . . 3 ⊢ 4 = (3 + 1) | |
| 4 | df-3 12251 | . . . 4 ⊢ 3 = (2 + 1) | |
| 5 | 4 | oveq1i 7399 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
| 6 | 2cn 12262 | . . . 4 ⊢ 2 ∈ ℂ | |
| 7 | ax-1cn 11132 | . . . 4 ⊢ 1 ∈ ℂ | |
| 8 | 6, 7, 7 | addassi 11190 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
| 9 | 3, 5, 8 | 3eqtri 2757 | . 2 ⊢ 4 = (2 + (1 + 1)) |
| 10 | 2, 9 | eqtr4i 2756 | 1 ⊢ (2 + 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7389 1c1 11075 + caddc 11077 2c2 12242 3c3 12243 4c4 12244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11132 ax-addcl 11134 ax-addass 11139 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-ov 7392 df-2 12250 df-3 12251 df-4 12252 |
| This theorem is referenced by: 2t2e4 12351 i4 14175 4bc2eq6 14300 bpoly4 16031 fsumcube 16032 ef01bndlem 16158 6gcd4e2 16514 pythagtriplem1 16793 prmlem2 17096 43prm 17098 1259lem4 17110 2503lem1 17113 2503lem2 17114 2503lem3 17115 4001lem1 17117 4001lem4 17120 cphipval2 25147 quart1lem 26771 log2ub 26865 hgt750lem2 34649 3lexlogpow5ineq1 42037 3lexlogpow5ineq5 42043 3cubeslem3l 42667 3cubeslem3r 42668 wallispi2lem1 46062 stirlinglem8 46072 sqwvfourb 46220 fmtnorec4 47540 m11nprm 47592 3exp4mod41 47607 gbowgt5 47753 gbpart7 47758 sbgoldbaltlem1 47770 sbgoldbalt 47772 sgoldbeven3prm 47774 mogoldbb 47776 nnsum3primes4 47779 pgnbgreunbgrlem2lem3 48096 2t6m3t4e0 48326 ackval1012 48669 2p2ne5 49777 |
| Copyright terms: Public domain | W3C validator |