| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version | ||
| Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8575 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2p2e4 | ⊢ (2 + 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12325 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7440 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
| 3 | df-4 12327 | . . 3 ⊢ 4 = (3 + 1) | |
| 4 | df-3 12326 | . . . 4 ⊢ 3 = (2 + 1) | |
| 5 | 4 | oveq1i 7439 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
| 6 | 2cn 12337 | . . . 4 ⊢ 2 ∈ ℂ | |
| 7 | ax-1cn 11209 | . . . 4 ⊢ 1 ∈ ℂ | |
| 8 | 6, 7, 7 | addassi 11267 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
| 9 | 3, 5, 8 | 3eqtri 2768 | . 2 ⊢ 4 = (2 + (1 + 1)) |
| 10 | 2, 9 | eqtr4i 2767 | 1 ⊢ (2 + 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7429 1c1 11152 + caddc 11154 2c2 12317 3c3 12318 4c4 12319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11209 ax-addcl 11211 ax-addass 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-iota 6512 df-fv 6567 df-ov 7432 df-2 12325 df-3 12326 df-4 12327 |
| This theorem is referenced by: 2t2e4 12426 i4 14239 4bc2eq6 14364 bpoly4 16091 fsumcube 16092 ef01bndlem 16216 6gcd4e2 16571 pythagtriplem1 16850 prmlem2 17153 43prm 17155 1259lem4 17167 2503lem1 17170 2503lem2 17171 2503lem3 17172 4001lem1 17174 4001lem4 17177 cphipval2 25265 quart1lem 26888 log2ub 26982 hgt750lem2 34645 3lexlogpow5ineq1 42033 3lexlogpow5ineq5 42039 3cubeslem3l 42675 3cubeslem3r 42676 wallispi2lem1 46059 stirlinglem8 46069 sqwvfourb 46217 fmtnorec4 47509 m11nprm 47561 3exp4mod41 47576 gbowgt5 47722 gbpart7 47727 sbgoldbaltlem1 47739 sbgoldbalt 47741 sgoldbeven3prm 47743 mogoldbb 47745 nnsum3primes4 47748 2t6m3t4e0 48237 ackval1012 48584 2p2ne5 49290 |
| Copyright terms: Public domain | W3C validator |