| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p3e7 | Structured version Visualization version GIF version | ||
| Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 4p3e7 | ⊢ (4 + 3) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12184 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7352 | . . 3 ⊢ (4 + 3) = (4 + (2 + 1)) |
| 3 | 4cn 12205 | . . . 4 ⊢ 4 ∈ ℂ | |
| 4 | 2cn 12195 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11059 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11117 | . . 3 ⊢ ((4 + 2) + 1) = (4 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2757 | . 2 ⊢ (4 + 3) = ((4 + 2) + 1) |
| 8 | df-7 12188 | . . 3 ⊢ 7 = (6 + 1) | |
| 9 | 4p2e6 12268 | . . . 4 ⊢ (4 + 2) = 6 | |
| 10 | 9 | oveq1i 7351 | . . 3 ⊢ ((4 + 2) + 1) = (6 + 1) |
| 11 | 8, 10 | eqtr4i 2757 | . 2 ⊢ 7 = ((4 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2757 | 1 ⊢ (4 + 3) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7341 1c1 11002 + caddc 11004 2c2 12175 3c3 12176 4c4 12177 6c6 12179 7c7 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11059 ax-addcl 11061 ax-addass 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 |
| This theorem is referenced by: 4p4e8 12270 hash7g 14388 37prm 17027 317prm 17032 1259lem5 17041 2503lem2 17044 4001lem1 17047 4001lem2 17048 log2ub 26881 bposlem8 27224 2lgslem3d 27332 2lgsoddprmlem3d 27346 hgt750lem 34656 hgt750lem2 34657 fmtno5lem4 47587 257prm 47592 127prm 47630 gbpart7 47798 sbgoldbwt 47808 sbgoldbst 47809 ackval2012 48723 |
| Copyright terms: Public domain | W3C validator |