![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4p3e7 | Structured version Visualization version GIF version |
Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p3e7 | ⊢ (4 + 3) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12328 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7442 | . . 3 ⊢ (4 + 3) = (4 + (2 + 1)) |
3 | 4cn 12349 | . . . 4 ⊢ 4 ∈ ℂ | |
4 | 2cn 12339 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 11211 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 11269 | . . 3 ⊢ ((4 + 2) + 1) = (4 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2766 | . 2 ⊢ (4 + 3) = ((4 + 2) + 1) |
8 | df-7 12332 | . . 3 ⊢ 7 = (6 + 1) | |
9 | 4p2e6 12417 | . . . 4 ⊢ (4 + 2) = 6 | |
10 | 9 | oveq1i 7441 | . . 3 ⊢ ((4 + 2) + 1) = (6 + 1) |
11 | 8, 10 | eqtr4i 2766 | . 2 ⊢ 7 = ((4 + 2) + 1) |
12 | 7, 11 | eqtr4i 2766 | 1 ⊢ (4 + 3) = 7 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 1c1 11154 + caddc 11156 2c2 12319 3c3 12320 4c4 12321 6c6 12323 7c7 12324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-1cn 11211 ax-addcl 11213 ax-addass 11218 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 |
This theorem is referenced by: 4p4e8 12419 hash7g 14522 37prm 17155 317prm 17160 1259lem5 17169 2503lem2 17172 4001lem1 17175 4001lem2 17176 log2ub 27007 bposlem8 27350 2lgslem3d 27458 2lgsoddprmlem3d 27472 hgt750lem 34645 hgt750lem2 34646 fmtno5lem4 47481 257prm 47486 127prm 47524 gbpart7 47692 sbgoldbwt 47702 sbgoldbst 47703 ackval2012 48541 |
Copyright terms: Public domain | W3C validator |