Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4p3e7 | Structured version Visualization version GIF version |
Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p3e7 | ⊢ (4 + 3) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12037 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7286 | . . 3 ⊢ (4 + 3) = (4 + (2 + 1)) |
3 | 4cn 12058 | . . . 4 ⊢ 4 ∈ ℂ | |
4 | 2cn 12048 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 10929 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10985 | . . 3 ⊢ ((4 + 2) + 1) = (4 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2769 | . 2 ⊢ (4 + 3) = ((4 + 2) + 1) |
8 | df-7 12041 | . . 3 ⊢ 7 = (6 + 1) | |
9 | 4p2e6 12126 | . . . 4 ⊢ (4 + 2) = 6 | |
10 | 9 | oveq1i 7285 | . . 3 ⊢ ((4 + 2) + 1) = (6 + 1) |
11 | 8, 10 | eqtr4i 2769 | . 2 ⊢ 7 = ((4 + 2) + 1) |
12 | 7, 11 | eqtr4i 2769 | 1 ⊢ (4 + 3) = 7 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 1c1 10872 + caddc 10874 2c2 12028 3c3 12029 4c4 12030 6c6 12032 7c7 12033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-addcl 10931 ax-addass 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 |
This theorem is referenced by: 4p4e8 12128 37prm 16822 317prm 16827 1259lem5 16836 2503lem2 16839 4001lem1 16842 4001lem2 16843 log2ub 26099 bposlem8 26439 2lgslem3d 26547 2lgsoddprmlem3d 26561 hgt750lem 32631 hgt750lem2 32632 fmtno5lem4 45008 257prm 45013 127prm 45051 gbpart7 45219 sbgoldbwt 45229 sbgoldbst 45230 ackval2012 46037 |
Copyright terms: Public domain | W3C validator |