MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4p3e7 Structured version   Visualization version   GIF version

Theorem 4p3e7 12277
Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
4p3e7 (4 + 3) = 7

Proof of Theorem 4p3e7
StepHypRef Expression
1 df-3 12192 . . . 4 3 = (2 + 1)
21oveq2i 7360 . . 3 (4 + 3) = (4 + (2 + 1))
3 4cn 12213 . . . 4 4 ∈ ℂ
4 2cn 12203 . . . 4 2 ∈ ℂ
5 ax-1cn 11067 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11125 . . 3 ((4 + 2) + 1) = (4 + (2 + 1))
72, 6eqtr4i 2755 . 2 (4 + 3) = ((4 + 2) + 1)
8 df-7 12196 . . 3 7 = (6 + 1)
9 4p2e6 12276 . . . 4 (4 + 2) = 6
109oveq1i 7359 . . 3 ((4 + 2) + 1) = (6 + 1)
118, 10eqtr4i 2755 . 2 7 = ((4 + 2) + 1)
127, 11eqtr4i 2755 1 (4 + 3) = 7
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7349  1c1 11010   + caddc 11012  2c2 12183  3c3 12184  4c4 12185  6c6 12187  7c7 12188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11067  ax-addcl 11069  ax-addass 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196
This theorem is referenced by:  4p4e8  12278  hash7g  14393  37prm  17032  317prm  17037  1259lem5  17046  2503lem2  17049  4001lem1  17052  4001lem2  17053  log2ub  26857  bposlem8  27200  2lgslem3d  27308  2lgsoddprmlem3d  27322  hgt750lem  34619  hgt750lem2  34620  fmtno5lem4  47540  257prm  47545  127prm  47583  gbpart7  47751  sbgoldbwt  47761  sbgoldbst  47762  ackval2012  48676
  Copyright terms: Public domain W3C validator