![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4p3e7 | Structured version Visualization version GIF version |
Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p3e7 | ⊢ (4 + 3) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12357 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7459 | . . 3 ⊢ (4 + 3) = (4 + (2 + 1)) |
3 | 4cn 12378 | . . . 4 ⊢ 4 ∈ ℂ | |
4 | 2cn 12368 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 11242 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 11300 | . . 3 ⊢ ((4 + 2) + 1) = (4 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2771 | . 2 ⊢ (4 + 3) = ((4 + 2) + 1) |
8 | df-7 12361 | . . 3 ⊢ 7 = (6 + 1) | |
9 | 4p2e6 12446 | . . . 4 ⊢ (4 + 2) = 6 | |
10 | 9 | oveq1i 7458 | . . 3 ⊢ ((4 + 2) + 1) = (6 + 1) |
11 | 8, 10 | eqtr4i 2771 | . 2 ⊢ 7 = ((4 + 2) + 1) |
12 | 7, 11 | eqtr4i 2771 | 1 ⊢ (4 + 3) = 7 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 + caddc 11187 2c2 12348 3c3 12349 4c4 12350 6c6 12352 7c7 12353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-addcl 11244 ax-addass 11249 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 |
This theorem is referenced by: 4p4e8 12448 hash7g 14535 37prm 17168 317prm 17173 1259lem5 17182 2503lem2 17185 4001lem1 17188 4001lem2 17189 log2ub 27010 bposlem8 27353 2lgslem3d 27461 2lgsoddprmlem3d 27475 hgt750lem 34628 hgt750lem2 34629 fmtno5lem4 47430 257prm 47435 127prm 47473 gbpart7 47641 sbgoldbwt 47651 sbgoldbst 47652 ackval2012 48425 |
Copyright terms: Public domain | W3C validator |