| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p3e7 | Structured version Visualization version GIF version | ||
| Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 4p3e7 | ⊢ (4 + 3) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12312 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7424 | . . 3 ⊢ (4 + 3) = (4 + (2 + 1)) |
| 3 | 4cn 12333 | . . . 4 ⊢ 4 ∈ ℂ | |
| 4 | 2cn 12323 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11195 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11253 | . . 3 ⊢ ((4 + 2) + 1) = (4 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2760 | . 2 ⊢ (4 + 3) = ((4 + 2) + 1) |
| 8 | df-7 12316 | . . 3 ⊢ 7 = (6 + 1) | |
| 9 | 4p2e6 12401 | . . . 4 ⊢ (4 + 2) = 6 | |
| 10 | 9 | oveq1i 7423 | . . 3 ⊢ ((4 + 2) + 1) = (6 + 1) |
| 11 | 8, 10 | eqtr4i 2760 | . 2 ⊢ 7 = ((4 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2760 | 1 ⊢ (4 + 3) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 (class class class)co 7413 1c1 11138 + caddc 11140 2c2 12303 3c3 12304 4c4 12305 6c6 12307 7c7 12308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-1cn 11195 ax-addcl 11197 ax-addass 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 |
| This theorem is referenced by: 4p4e8 12403 hash7g 14508 37prm 17141 317prm 17146 1259lem5 17155 2503lem2 17158 4001lem1 17161 4001lem2 17162 log2ub 26929 bposlem8 27272 2lgslem3d 27380 2lgsoddprmlem3d 27394 hgt750lem 34641 hgt750lem2 34642 fmtno5lem4 47516 257prm 47521 127prm 47559 gbpart7 47727 sbgoldbwt 47737 sbgoldbst 47738 ackval2012 48585 |
| Copyright terms: Public domain | W3C validator |