| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p3e7 | Structured version Visualization version GIF version | ||
| Description: 4 + 3 = 7. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 4p3e7 | ⊢ (4 + 3) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12192 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7360 | . . 3 ⊢ (4 + 3) = (4 + (2 + 1)) |
| 3 | 4cn 12213 | . . . 4 ⊢ 4 ∈ ℂ | |
| 4 | 2cn 12203 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11067 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11125 | . . 3 ⊢ ((4 + 2) + 1) = (4 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2755 | . 2 ⊢ (4 + 3) = ((4 + 2) + 1) |
| 8 | df-7 12196 | . . 3 ⊢ 7 = (6 + 1) | |
| 9 | 4p2e6 12276 | . . . 4 ⊢ (4 + 2) = 6 | |
| 10 | 9 | oveq1i 7359 | . . 3 ⊢ ((4 + 2) + 1) = (6 + 1) |
| 11 | 8, 10 | eqtr4i 2755 | . 2 ⊢ 7 = ((4 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2755 | 1 ⊢ (4 + 3) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 2c2 12183 3c3 12184 4c4 12185 6c6 12187 7c7 12188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-addcl 11069 ax-addass 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 |
| This theorem is referenced by: 4p4e8 12278 hash7g 14393 37prm 17032 317prm 17037 1259lem5 17046 2503lem2 17049 4001lem1 17052 4001lem2 17053 log2ub 26857 bposlem8 27200 2lgslem3d 27308 2lgsoddprmlem3d 27322 hgt750lem 34619 hgt750lem2 34620 fmtno5lem4 47540 257prm 47545 127prm 47583 gbpart7 47751 sbgoldbwt 47761 sbgoldbst 47762 ackval2012 48676 |
| Copyright terms: Public domain | W3C validator |