Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbpart9 Structured version   Visualization version   GIF version

Theorem gbpart9 46427
Description: The (strong) Goldbach partition of 9. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
gbpart9 9 = ((3 + 3) + 3)

Proof of Theorem gbpart9
StepHypRef Expression
1 3p3e6 12363 . . 3 (3 + 3) = 6
21oveq1i 7418 . 2 ((3 + 3) + 3) = (6 + 3)
3 6p3e9 12371 . 2 (6 + 3) = 9
42, 3eqtr2i 2761 1 9 = ((3 + 3) + 3)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7408   + caddc 11112  3c3 12267  6c6 12270  9c9 12273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-1cn 11167  ax-addcl 11169  ax-addass 11174
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281
This theorem is referenced by:  9gbo  46432
  Copyright terms: Public domain W3C validator