Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart9 | Structured version Visualization version GIF version |
Description: The (strong) Goldbach partition of 9. (Contributed by AV, 26-Jul-2020.) |
Ref | Expression |
---|---|
gbpart9 | ⊢ 9 = ((3 + 3) + 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p3e6 12175 | . . 3 ⊢ (3 + 3) = 6 | |
2 | 1 | oveq1i 7317 | . 2 ⊢ ((3 + 3) + 3) = (6 + 3) |
3 | 6p3e9 12183 | . 2 ⊢ (6 + 3) = 9 | |
4 | 2, 3 | eqtr2i 2765 | 1 ⊢ 9 = ((3 + 3) + 3) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7307 + caddc 10924 3c3 12079 6c6 12082 9c9 12085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-1cn 10979 ax-addcl 10981 ax-addass 10986 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 |
This theorem is referenced by: 9gbo 45470 |
Copyright terms: Public domain | W3C validator |