![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart9 | Structured version Visualization version GIF version |
Description: The (strong) Goldbach partition of 9. (Contributed by AV, 26-Jul-2020.) |
Ref | Expression |
---|---|
gbpart9 | ⊢ 9 = ((3 + 3) + 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p3e6 12445 | . . 3 ⊢ (3 + 3) = 6 | |
2 | 1 | oveq1i 7458 | . 2 ⊢ ((3 + 3) + 3) = (6 + 3) |
3 | 6p3e9 12453 | . 2 ⊢ (6 + 3) = 9 | |
4 | 2, 3 | eqtr2i 2769 | 1 ⊢ 9 = ((3 + 3) + 3) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 + caddc 11187 3c3 12349 6c6 12352 9c9 12355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-addcl 11244 ax-addass 11249 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 |
This theorem is referenced by: 9gbo 47648 |
Copyright terms: Public domain | W3C validator |