MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p3e9 Structured version   Visualization version   GIF version

Theorem 6p3e9 12317
Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p3e9 (6 + 3) = 9

Proof of Theorem 6p3e9
StepHypRef Expression
1 df-3 12226 . . . 4 3 = (2 + 1)
21oveq2i 7380 . . 3 (6 + 3) = (6 + (2 + 1))
3 6cn 12253 . . . 4 6 ∈ ℂ
4 2cn 12237 . . . 4 2 ∈ ℂ
5 ax-1cn 11102 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11160 . . 3 ((6 + 2) + 1) = (6 + (2 + 1))
72, 6eqtr4i 2755 . 2 (6 + 3) = ((6 + 2) + 1)
8 df-9 12232 . . 3 9 = (8 + 1)
9 6p2e8 12316 . . . 4 (6 + 2) = 8
109oveq1i 7379 . . 3 ((6 + 2) + 1) = (8 + 1)
118, 10eqtr4i 2755 . 2 9 = ((6 + 2) + 1)
127, 11eqtr4i 2755 1 (6 + 3) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7369  1c1 11045   + caddc 11047  2c2 12217  3c3 12218  6c6 12221  8c8 12223  9c9 12224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11102  ax-addcl 11104  ax-addass 11109
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232
This theorem is referenced by:  3t3e9  12324  6p4e10  12697  2exp8  17035  139prm  17070  2503lem2  17084  4001lem1  17087  4001lem2  17088  4001lem4  17090  log2ublem3  26834  ex-gcd  30359  hgt750lem2  34616  kur14lem8  35173  problem5  35629  fmtno5lem1  47527  139prmALT  47570  gboge9  47738  gbpart9  47743  nnsum4primeseven  47774
  Copyright terms: Public domain W3C validator