MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p3e9 Structured version   Visualization version   GIF version

Theorem 6p3e9 12371
Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p3e9 (6 + 3) = 9

Proof of Theorem 6p3e9
StepHypRef Expression
1 df-3 12275 . . . 4 3 = (2 + 1)
21oveq2i 7419 . . 3 (6 + 3) = (6 + (2 + 1))
3 6cn 12302 . . . 4 6 ∈ ℂ
4 2cn 12286 . . . 4 2 ∈ ℂ
5 ax-1cn 11167 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11223 . . 3 ((6 + 2) + 1) = (6 + (2 + 1))
72, 6eqtr4i 2763 . 2 (6 + 3) = ((6 + 2) + 1)
8 df-9 12281 . . 3 9 = (8 + 1)
9 6p2e8 12370 . . . 4 (6 + 2) = 8
109oveq1i 7418 . . 3 ((6 + 2) + 1) = (8 + 1)
118, 10eqtr4i 2763 . 2 9 = ((6 + 2) + 1)
127, 11eqtr4i 2763 1 (6 + 3) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7408  1c1 11110   + caddc 11112  2c2 12266  3c3 12267  6c6 12270  8c8 12272  9c9 12273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-1cn 11167  ax-addcl 11169  ax-addass 11174
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281
This theorem is referenced by:  3t3e9  12378  6p4e10  12748  2exp8  17021  139prm  17056  2503lem2  17070  4001lem1  17073  4001lem2  17074  4001lem4  17076  log2ublem3  26450  ex-gcd  29707  hgt750lem2  33659  kur14lem8  34199  problem5  34649  fmtno5lem1  46211  139prmALT  46254  gboge9  46422  gbpart9  46427  nnsum4primeseven  46458
  Copyright terms: Public domain W3C validator