| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p3e9 | Structured version Visualization version GIF version | ||
| Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 6p3e9 | ⊢ (6 + 3) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12200 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7366 | . . 3 ⊢ (6 + 3) = (6 + (2 + 1)) |
| 3 | 6cn 12227 | . . . 4 ⊢ 6 ∈ ℂ | |
| 4 | 2cn 12211 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11075 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11133 | . . 3 ⊢ ((6 + 2) + 1) = (6 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2759 | . 2 ⊢ (6 + 3) = ((6 + 2) + 1) |
| 8 | df-9 12206 | . . 3 ⊢ 9 = (8 + 1) | |
| 9 | 6p2e8 12290 | . . . 4 ⊢ (6 + 2) = 8 | |
| 10 | 9 | oveq1i 7365 | . . 3 ⊢ ((6 + 2) + 1) = (8 + 1) |
| 11 | 8, 10 | eqtr4i 2759 | . 2 ⊢ 9 = ((6 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2759 | 1 ⊢ (6 + 3) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7355 1c1 11018 + caddc 11020 2c2 12191 3c3 12192 6c6 12195 8c8 12197 9c9 12198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-1cn 11075 ax-addcl 11077 ax-addass 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 |
| This theorem is referenced by: 3t3e9 12298 6p4e10 12670 2exp8 17007 139prm 17042 2503lem2 17056 4001lem1 17059 4001lem2 17060 4001lem4 17062 log2ublem3 26905 ex-gcd 30458 hgt750lem2 34737 kur14lem8 35329 problem5 35785 fmtno5lem1 47715 139prmALT 47758 gboge9 47926 gbpart9 47931 nnsum4primeseven 47962 |
| Copyright terms: Public domain | W3C validator |