MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p3e9 Structured version   Visualization version   GIF version

Theorem 6p3e9 12291
Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p3e9 (6 + 3) = 9

Proof of Theorem 6p3e9
StepHypRef Expression
1 df-3 12200 . . . 4 3 = (2 + 1)
21oveq2i 7366 . . 3 (6 + 3) = (6 + (2 + 1))
3 6cn 12227 . . . 4 6 ∈ ℂ
4 2cn 12211 . . . 4 2 ∈ ℂ
5 ax-1cn 11075 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11133 . . 3 ((6 + 2) + 1) = (6 + (2 + 1))
72, 6eqtr4i 2759 . 2 (6 + 3) = ((6 + 2) + 1)
8 df-9 12206 . . 3 9 = (8 + 1)
9 6p2e8 12290 . . . 4 (6 + 2) = 8
109oveq1i 7365 . . 3 ((6 + 2) + 1) = (8 + 1)
118, 10eqtr4i 2759 . 2 9 = ((6 + 2) + 1)
127, 11eqtr4i 2759 1 (6 + 3) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7355  1c1 11018   + caddc 11020  2c2 12191  3c3 12192  6c6 12195  8c8 12197  9c9 12198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-1cn 11075  ax-addcl 11077  ax-addass 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206
This theorem is referenced by:  3t3e9  12298  6p4e10  12670  2exp8  17007  139prm  17042  2503lem2  17056  4001lem1  17059  4001lem2  17060  4001lem4  17062  log2ublem3  26905  ex-gcd  30458  hgt750lem2  34737  kur14lem8  35329  problem5  35785  fmtno5lem1  47715  139prmALT  47758  gboge9  47926  gbpart9  47931  nnsum4primeseven  47962
  Copyright terms: Public domain W3C validator