| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p3e9 | Structured version Visualization version GIF version | ||
| Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 6p3e9 | ⊢ (6 + 3) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12257 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7401 | . . 3 ⊢ (6 + 3) = (6 + (2 + 1)) |
| 3 | 6cn 12284 | . . . 4 ⊢ 6 ∈ ℂ | |
| 4 | 2cn 12268 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11133 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11191 | . . 3 ⊢ ((6 + 2) + 1) = (6 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2756 | . 2 ⊢ (6 + 3) = ((6 + 2) + 1) |
| 8 | df-9 12263 | . . 3 ⊢ 9 = (8 + 1) | |
| 9 | 6p2e8 12347 | . . . 4 ⊢ (6 + 2) = 8 | |
| 10 | 9 | oveq1i 7400 | . . 3 ⊢ ((6 + 2) + 1) = (8 + 1) |
| 11 | 8, 10 | eqtr4i 2756 | . 2 ⊢ 9 = ((6 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2756 | 1 ⊢ (6 + 3) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 + caddc 11078 2c2 12248 3c3 12249 6c6 12252 8c8 12254 9c9 12255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addcl 11135 ax-addass 11140 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 |
| This theorem is referenced by: 3t3e9 12355 6p4e10 12728 2exp8 17066 139prm 17101 2503lem2 17115 4001lem1 17118 4001lem2 17119 4001lem4 17121 log2ublem3 26865 ex-gcd 30393 hgt750lem2 34650 kur14lem8 35207 problem5 35663 fmtno5lem1 47558 139prmALT 47601 gboge9 47769 gbpart9 47774 nnsum4primeseven 47805 |
| Copyright terms: Public domain | W3C validator |