Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6p3e9 | Structured version Visualization version GIF version |
Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
6p3e9 | ⊢ (6 + 3) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 11967 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7266 | . . 3 ⊢ (6 + 3) = (6 + (2 + 1)) |
3 | 6cn 11994 | . . . 4 ⊢ 6 ∈ ℂ | |
4 | 2cn 11978 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 10860 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10916 | . . 3 ⊢ ((6 + 2) + 1) = (6 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2769 | . 2 ⊢ (6 + 3) = ((6 + 2) + 1) |
8 | df-9 11973 | . . 3 ⊢ 9 = (8 + 1) | |
9 | 6p2e8 12062 | . . . 4 ⊢ (6 + 2) = 8 | |
10 | 9 | oveq1i 7265 | . . 3 ⊢ ((6 + 2) + 1) = (8 + 1) |
11 | 8, 10 | eqtr4i 2769 | . 2 ⊢ 9 = ((6 + 2) + 1) |
12 | 7, 11 | eqtr4i 2769 | 1 ⊢ (6 + 3) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 1c1 10803 + caddc 10805 2c2 11958 3c3 11959 6c6 11962 8c8 11964 9c9 11965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-addcl 10862 ax-addass 10867 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 |
This theorem is referenced by: 3t3e9 12070 6p4e10 12438 2exp8 16718 139prm 16753 2503lem2 16767 4001lem1 16770 4001lem2 16771 4001lem4 16773 log2ublem3 26003 ex-gcd 28722 hgt750lem2 32532 kur14lem8 33075 problem5 33527 fmtno5lem1 44893 139prmALT 44936 gboge9 45104 gbpart9 45109 nnsum4primeseven 45140 |
Copyright terms: Public domain | W3C validator |