MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvex Structured version   Visualization version   GIF version

Theorem grpinvex 18113
Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpcl.b 𝐵 = (Base‘𝐺)
grpcl.p + = (+g𝐺)
grpinvex.p 0 = (0g𝐺)
Assertion
Ref Expression
grpinvex ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   + (𝑦)   0 (𝑦)

Proof of Theorem grpinvex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpcl.b . . . 4 𝐵 = (Base‘𝐺)
2 grpcl.p . . . 4 + = (+g𝐺)
3 grpinvex.p . . . 4 0 = (0g𝐺)
41, 2, 3isgrp 18109 . . 3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 ))
54simprbi 499 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 )
6 oveq2 7164 . . . . 5 (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋))
76eqeq1d 2823 . . . 4 (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 ))
87rexbidv 3297 . . 3 (𝑥 = 𝑋 → (∃𝑦𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦𝐵 (𝑦 + 𝑋) = 0 ))
98rspccva 3622 . 2 ((∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
105, 9sylan 582 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Mndcmnd 17911  Grpcgrp 18103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-iota 6314  df-fv 6363  df-ov 7159  df-grp 18106
This theorem is referenced by:  dfgrp2  18128  grprcan  18137  grpinveu  18138  grprinv  18153
  Copyright terms: Public domain W3C validator