| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvex | Structured version Visualization version GIF version | ||
| Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| grpinvex.p | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvex | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 3 | grpinvex.p | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isgrp 18878 | . . 3 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
| 5 | 4 | simprbi 496 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
| 6 | oveq2 7398 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋)) | |
| 7 | 6 | eqeq1d 2732 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 )) |
| 8 | 7 | rexbidv 3158 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 9 | 8 | rspccva 3590 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| 10 | 5, 9 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 Grpcgrp 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-grp 18875 |
| This theorem is referenced by: dfgrp2 18901 grprcan 18912 grpinveu 18913 grprinv 18929 |
| Copyright terms: Public domain | W3C validator |