MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvex Structured version   Visualization version   GIF version

Theorem grpinvex 18875
Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpcl.b 𝐵 = (Base‘𝐺)
grpcl.p + = (+g𝐺)
grpinvex.p 0 = (0g𝐺)
Assertion
Ref Expression
grpinvex ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   + (𝑦)   0 (𝑦)

Proof of Theorem grpinvex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpcl.b . . . 4 𝐵 = (Base‘𝐺)
2 grpcl.p . . . 4 + = (+g𝐺)
3 grpinvex.p . . . 4 0 = (0g𝐺)
41, 2, 3isgrp 18871 . . 3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 ))
54simprbi 496 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 )
6 oveq2 7395 . . . . 5 (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋))
76eqeq1d 2731 . . . 4 (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 ))
87rexbidv 3157 . . 3 (𝑥 = 𝑋 → (∃𝑦𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦𝐵 (𝑦 + 𝑋) = 0 ))
98rspccva 3587 . 2 ((∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
105, 9sylan 580 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Mndcmnd 18661  Grpcgrp 18865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-grp 18868
This theorem is referenced by:  dfgrp2  18894  grprcan  18905  grpinveu  18906  grprinv  18922
  Copyright terms: Public domain W3C validator