MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvex Structured version   Visualization version   GIF version

Theorem grpinvex 18105
Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpcl.b 𝐵 = (Base‘𝐺)
grpcl.p + = (+g𝐺)
grpinvex.p 0 = (0g𝐺)
Assertion
Ref Expression
grpinvex ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   + (𝑦)   0 (𝑦)

Proof of Theorem grpinvex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpcl.b . . . 4 𝐵 = (Base‘𝐺)
2 grpcl.p . . . 4 + = (+g𝐺)
3 grpinvex.p . . . 4 0 = (0g𝐺)
41, 2, 3isgrp 18101 . . 3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 ))
54simprbi 500 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 )
6 oveq2 7143 . . . . 5 (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋))
76eqeq1d 2800 . . . 4 (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 ))
87rexbidv 3256 . . 3 (𝑥 = 𝑋 → (∃𝑦𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦𝐵 (𝑦 + 𝑋) = 0 ))
98rspccva 3570 . 2 ((∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
105, 9sylan 583 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Mndcmnd 17903  Grpcgrp 18095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-grp 18098
This theorem is referenced by:  dfgrp2  18120  grprcan  18129  grpinveu  18130  grprinv  18145
  Copyright terms: Public domain W3C validator