| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvex | Structured version Visualization version GIF version | ||
| Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| grpinvex.p | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvex | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 3 | grpinvex.p | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isgrp 18958 | . . 3 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
| 5 | 4 | simprbi 496 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
| 6 | oveq2 7440 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋)) | |
| 7 | 6 | eqeq1d 2738 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 )) |
| 8 | 7 | rexbidv 3178 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 9 | 8 | rspccva 3620 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| 10 | 5, 9 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 0gc0g 17485 Mndcmnd 18748 Grpcgrp 18952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-grp 18955 |
| This theorem is referenced by: dfgrp2 18981 grprcan 18992 grpinveu 18993 grprinv 19009 |
| Copyright terms: Public domain | W3C validator |