Step | Hyp | Ref
| Expression |
1 | | grpsgrp 18603 |
. . 3
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) |
2 | | grpmnd 18584 |
. . . . 5
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
3 | | dfgrp2.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
4 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
5 | 3, 4 | mndidcl 18400 |
. . . . 5
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ 𝐵) |
6 | 2, 5 | syl 17 |
. . . 4
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
7 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑛 = (0g‘𝐺) → (𝑛 + 𝑥) = ((0g‘𝐺) + 𝑥)) |
8 | 7 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑛 = (0g‘𝐺) → ((𝑛 + 𝑥) = 𝑥 ↔ ((0g‘𝐺) + 𝑥) = 𝑥)) |
9 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑛 = (0g‘𝐺) → ((𝑖 + 𝑥) = 𝑛 ↔ (𝑖 + 𝑥) = (0g‘𝐺))) |
10 | 9 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑛 = (0g‘𝐺) → (∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛 ↔ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺))) |
11 | 8, 10 | anbi12d 631 |
. . . . . 6
⊢ (𝑛 = (0g‘𝐺) → (((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)))) |
12 | 11 | ralbidv 3112 |
. . . . 5
⊢ (𝑛 = (0g‘𝐺) → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ∀𝑥 ∈ 𝐵 (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)))) |
13 | 12 | adantl 482 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑛 = (0g‘𝐺)) → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ∀𝑥 ∈ 𝐵 (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)))) |
14 | | dfgrp2.p |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
15 | 3, 14, 4 | mndlid 18405 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺) + 𝑥) = 𝑥) |
16 | 2, 15 | sylan 580 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺) + 𝑥) = 𝑥) |
17 | 3, 14, 4 | grpinvex 18587 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)) |
18 | 16, 17 | jca 512 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺))) |
19 | 18 | ralrimiva 3103 |
. . . 4
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺))) |
20 | 6, 13, 19 | rspcedvd 3563 |
. . 3
⊢ (𝐺 ∈ Grp → ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) |
21 | 1, 20 | jca 512 |
. 2
⊢ (𝐺 ∈ Grp → (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
22 | 3 | a1i 11 |
. . . . . 6
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝐵 = (Base‘𝐺)) |
23 | 14 | a1i 11 |
. . . . . 6
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → + =
(+g‘𝐺)) |
24 | | sgrpmgm 18380 |
. . . . . . . 8
⊢ (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm) |
25 | 24 | adantl 482 |
. . . . . . 7
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝐺 ∈ Mgm) |
26 | 3, 14 | mgmcl 18329 |
. . . . . . 7
⊢ ((𝐺 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ∈ 𝐵) |
27 | 25, 26 | syl3an1 1162 |
. . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ∈ 𝐵) |
28 | 3, 14 | sgrpass 18381 |
. . . . . . 7
⊢ ((𝐺 ∈ Smgrp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) |
29 | 28 | adantll 711 |
. . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) |
30 | | simpll 764 |
. . . . . 6
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝑛 ∈ 𝐵) |
31 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → (𝑛 + 𝑥) = (𝑛 + 𝑎)) |
32 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → 𝑥 = 𝑎) |
33 | 31, 32 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → ((𝑛 + 𝑥) = 𝑥 ↔ (𝑛 + 𝑎) = 𝑎)) |
34 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (𝑖 + 𝑥) = (𝑖 + 𝑎)) |
35 | 34 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ((𝑖 + 𝑥) = 𝑛 ↔ (𝑖 + 𝑎) = 𝑛)) |
36 | 35 | rexbidv 3226 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛 ↔ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛)) |
37 | 33, 36 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛))) |
38 | 37 | rspcv 3557 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → ((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛))) |
39 | | simpl 483 |
. . . . . . . . 9
⊢ (((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛) → (𝑛 + 𝑎) = 𝑎) |
40 | 38, 39 | syl6com 37 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝑎 ∈ 𝐵 → (𝑛 + 𝑎) = 𝑎)) |
41 | 40 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → (𝑎 ∈ 𝐵 → (𝑛 + 𝑎) = 𝑎)) |
42 | 41 | imp 407 |
. . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ 𝑎 ∈ 𝐵) → (𝑛 + 𝑎) = 𝑎) |
43 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑏 → (𝑖 + 𝑎) = (𝑏 + 𝑎)) |
44 | 43 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑏 → ((𝑖 + 𝑎) = 𝑛 ↔ (𝑏 + 𝑎) = 𝑛)) |
45 | 44 | cbvrexvw 3384 |
. . . . . . . . . . 11
⊢
(∃𝑖 ∈
𝐵 (𝑖 + 𝑎) = 𝑛 ↔ ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) |
46 | 45 | biimpi 215 |
. . . . . . . . . 10
⊢
(∃𝑖 ∈
𝐵 (𝑖 + 𝑎) = 𝑛 → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) |
47 | 46 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛) → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) |
48 | 38, 47 | syl6com 37 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝑎 ∈ 𝐵 → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛)) |
49 | 48 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → (𝑎 ∈ 𝐵 → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛)) |
50 | 49 | imp 407 |
. . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ 𝑎 ∈ 𝐵) → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) |
51 | 22, 23, 27, 29, 30, 42, 50 | isgrpde 18600 |
. . . . 5
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝐺 ∈ Grp) |
52 | 51 | ex 413 |
. . . 4
⊢ ((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) → (𝐺 ∈ Smgrp → 𝐺 ∈ Grp)) |
53 | 52 | rexlimiva 3210 |
. . 3
⊢
(∃𝑛 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝐺 ∈ Smgrp → 𝐺 ∈ Grp)) |
54 | 53 | impcom 408 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) → 𝐺 ∈ Grp) |
55 | 21, 54 | impbii 208 |
1
⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |