| Step | Hyp | Ref
| Expression |
| 1 | | grpsgrp 18943 |
. . 3
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) |
| 2 | | grpmnd 18923 |
. . . . 5
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| 3 | | dfgrp2.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 4 | | eqid 2735 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 5 | 3, 4 | mndidcl 18727 |
. . . . 5
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ 𝐵) |
| 6 | 2, 5 | syl 17 |
. . . 4
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
| 7 | | oveq1 7412 |
. . . . . . . 8
⊢ (𝑛 = (0g‘𝐺) → (𝑛 + 𝑥) = ((0g‘𝐺) + 𝑥)) |
| 8 | 7 | eqeq1d 2737 |
. . . . . . 7
⊢ (𝑛 = (0g‘𝐺) → ((𝑛 + 𝑥) = 𝑥 ↔ ((0g‘𝐺) + 𝑥) = 𝑥)) |
| 9 | | eqeq2 2747 |
. . . . . . . 8
⊢ (𝑛 = (0g‘𝐺) → ((𝑖 + 𝑥) = 𝑛 ↔ (𝑖 + 𝑥) = (0g‘𝐺))) |
| 10 | 9 | rexbidv 3164 |
. . . . . . 7
⊢ (𝑛 = (0g‘𝐺) → (∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛 ↔ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺))) |
| 11 | 8, 10 | anbi12d 632 |
. . . . . 6
⊢ (𝑛 = (0g‘𝐺) → (((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)))) |
| 12 | 11 | ralbidv 3163 |
. . . . 5
⊢ (𝑛 = (0g‘𝐺) → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ∀𝑥 ∈ 𝐵 (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)))) |
| 13 | 12 | adantl 481 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑛 = (0g‘𝐺)) → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ∀𝑥 ∈ 𝐵 (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)))) |
| 14 | | dfgrp2.p |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
| 15 | 3, 14, 4 | mndlid 18732 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺) + 𝑥) = 𝑥) |
| 16 | 2, 15 | sylan 580 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺) + 𝑥) = 𝑥) |
| 17 | 3, 14, 4 | grpinvex 18926 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)) |
| 18 | 16, 17 | jca 511 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺))) |
| 19 | 18 | ralrimiva 3132 |
. . . 4
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺))) |
| 20 | 6, 13, 19 | rspcedvd 3603 |
. . 3
⊢ (𝐺 ∈ Grp → ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) |
| 21 | 1, 20 | jca 511 |
. 2
⊢ (𝐺 ∈ Grp → (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |
| 22 | 3 | a1i 11 |
. . . . . 6
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝐵 = (Base‘𝐺)) |
| 23 | 14 | a1i 11 |
. . . . . 6
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → + =
(+g‘𝐺)) |
| 24 | | sgrpmgm 18702 |
. . . . . . . 8
⊢ (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm) |
| 25 | 24 | adantl 481 |
. . . . . . 7
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝐺 ∈ Mgm) |
| 26 | 3, 14 | mgmcl 18621 |
. . . . . . 7
⊢ ((𝐺 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ∈ 𝐵) |
| 27 | 25, 26 | syl3an1 1163 |
. . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ∈ 𝐵) |
| 28 | 3, 14 | sgrpass 18703 |
. . . . . . 7
⊢ ((𝐺 ∈ Smgrp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) |
| 29 | 28 | adantll 714 |
. . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) |
| 30 | | simpll 766 |
. . . . . 6
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝑛 ∈ 𝐵) |
| 31 | | oveq2 7413 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → (𝑛 + 𝑥) = (𝑛 + 𝑎)) |
| 32 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → 𝑥 = 𝑎) |
| 33 | 31, 32 | eqeq12d 2751 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → ((𝑛 + 𝑥) = 𝑥 ↔ (𝑛 + 𝑎) = 𝑎)) |
| 34 | | oveq2 7413 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (𝑖 + 𝑥) = (𝑖 + 𝑎)) |
| 35 | 34 | eqeq1d 2737 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ((𝑖 + 𝑥) = 𝑛 ↔ (𝑖 + 𝑎) = 𝑛)) |
| 36 | 35 | rexbidv 3164 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛 ↔ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛)) |
| 37 | 33, 36 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛))) |
| 38 | 37 | rspcv 3597 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → ((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛))) |
| 39 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛) → (𝑛 + 𝑎) = 𝑎) |
| 40 | 38, 39 | syl6com 37 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝑎 ∈ 𝐵 → (𝑛 + 𝑎) = 𝑎)) |
| 41 | 40 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → (𝑎 ∈ 𝐵 → (𝑛 + 𝑎) = 𝑎)) |
| 42 | 41 | imp 406 |
. . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ 𝑎 ∈ 𝐵) → (𝑛 + 𝑎) = 𝑎) |
| 43 | | oveq1 7412 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑏 → (𝑖 + 𝑎) = (𝑏 + 𝑎)) |
| 44 | 43 | eqeq1d 2737 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑏 → ((𝑖 + 𝑎) = 𝑛 ↔ (𝑏 + 𝑎) = 𝑛)) |
| 45 | 44 | cbvrexvw 3221 |
. . . . . . . . . . 11
⊢
(∃𝑖 ∈
𝐵 (𝑖 + 𝑎) = 𝑛 ↔ ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) |
| 46 | 45 | biimpi 216 |
. . . . . . . . . 10
⊢
(∃𝑖 ∈
𝐵 (𝑖 + 𝑎) = 𝑛 → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) |
| 47 | 46 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛) → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) |
| 48 | 38, 47 | syl6com 37 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝑎 ∈ 𝐵 → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛)) |
| 49 | 48 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → (𝑎 ∈ 𝐵 → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛)) |
| 50 | 49 | imp 406 |
. . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ 𝑎 ∈ 𝐵) → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) |
| 51 | 22, 23, 27, 29, 30, 42, 50 | isgrpde 18940 |
. . . . 5
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝐺 ∈ Grp) |
| 52 | 51 | ex 412 |
. . . 4
⊢ ((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) → (𝐺 ∈ Smgrp → 𝐺 ∈ Grp)) |
| 53 | 52 | rexlimiva 3133 |
. . 3
⊢
(∃𝑛 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝐺 ∈ Smgrp → 𝐺 ∈ Grp)) |
| 54 | 53 | impcom 407 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) → 𝐺 ∈ Grp) |
| 55 | 21, 54 | impbii 209 |
1
⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |