MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp2 Structured version   Visualization version   GIF version

Theorem dfgrp2 17801
Description: Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 17779, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp2.b 𝐵 = (Base‘𝐺)
dfgrp2.p + = (+g𝐺)
Assertion
Ref Expression
dfgrp2 (𝐺 ∈ Grp ↔ (𝐺 ∈ SGrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
Distinct variable groups:   𝐵,𝑖,𝑛,𝑥   𝑖,𝐺,𝑛,𝑥   + ,𝑖,𝑛,𝑥

Proof of Theorem dfgrp2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsgrp 17800 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ SGrp)
2 grpmnd 17783 . . . . 5 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3 dfgrp2.b . . . . . 6 𝐵 = (Base‘𝐺)
4 eqid 2825 . . . . . 6 (0g𝐺) = (0g𝐺)
53, 4mndidcl 17661 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
62, 5syl 17 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
7 oveq1 6912 . . . . . . . 8 (𝑛 = (0g𝐺) → (𝑛 + 𝑥) = ((0g𝐺) + 𝑥))
87eqeq1d 2827 . . . . . . 7 (𝑛 = (0g𝐺) → ((𝑛 + 𝑥) = 𝑥 ↔ ((0g𝐺) + 𝑥) = 𝑥))
9 eqeq2 2836 . . . . . . . 8 (𝑛 = (0g𝐺) → ((𝑖 + 𝑥) = 𝑛 ↔ (𝑖 + 𝑥) = (0g𝐺)))
109rexbidv 3262 . . . . . . 7 (𝑛 = (0g𝐺) → (∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛 ↔ ∃𝑖𝐵 (𝑖 + 𝑥) = (0g𝐺)))
118, 10anbi12d 624 . . . . . 6 (𝑛 = (0g𝐺) → (((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) ↔ (((0g𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = (0g𝐺))))
1211ralbidv 3195 . . . . 5 (𝑛 = (0g𝐺) → (∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ∀𝑥𝐵 (((0g𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = (0g𝐺))))
1312adantl 475 . . . 4 ((𝐺 ∈ Grp ∧ 𝑛 = (0g𝐺)) → (∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ∀𝑥𝐵 (((0g𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = (0g𝐺))))
14 dfgrp2.p . . . . . . . 8 + = (+g𝐺)
153, 14, 4mndlid 17664 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ((0g𝐺) + 𝑥) = 𝑥)
162, 15sylan 575 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((0g𝐺) + 𝑥) = 𝑥)
173, 14, 4grpinvex 17786 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃𝑖𝐵 (𝑖 + 𝑥) = (0g𝐺))
1816, 17jca 507 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (((0g𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = (0g𝐺)))
1918ralrimiva 3175 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵 (((0g𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = (0g𝐺)))
206, 13, 19rspcedvd 3533 . . 3 (𝐺 ∈ Grp → ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛))
211, 20jca 507 . 2 (𝐺 ∈ Grp → (𝐺 ∈ SGrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
223a1i 11 . . . . . 6 (((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ SGrp) → 𝐵 = (Base‘𝐺))
2314a1i 11 . . . . . 6 (((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ SGrp) → + = (+g𝐺))
24 sgrpmgm 17642 . . . . . . . 8 (𝐺 ∈ SGrp → 𝐺 ∈ Mgm)
2524adantl 475 . . . . . . 7 (((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ SGrp) → 𝐺 ∈ Mgm)
263, 14mgmcl 17598 . . . . . . 7 ((𝐺 ∈ Mgm ∧ 𝑎𝐵𝑏𝐵) → (𝑎 + 𝑏) ∈ 𝐵)
2725, 26syl3an1 1206 . . . . . 6 ((((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ SGrp) ∧ 𝑎𝐵𝑏𝐵) → (𝑎 + 𝑏) ∈ 𝐵)
283, 14sgrpass 17643 . . . . . . 7 ((𝐺 ∈ SGrp ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐)))
2928adantll 705 . . . . . 6 ((((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ SGrp) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐)))
30 simpll 783 . . . . . 6 (((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ SGrp) → 𝑛𝐵)
31 oveq2 6913 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑛 + 𝑥) = (𝑛 + 𝑎))
32 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑎𝑥 = 𝑎)
3331, 32eqeq12d 2840 . . . . . . . . . . 11 (𝑥 = 𝑎 → ((𝑛 + 𝑥) = 𝑥 ↔ (𝑛 + 𝑎) = 𝑎))
34 oveq2 6913 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑖 + 𝑥) = (𝑖 + 𝑎))
3534eqeq1d 2827 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((𝑖 + 𝑥) = 𝑛 ↔ (𝑖 + 𝑎) = 𝑛))
3635rexbidv 3262 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛 ↔ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑛))
3733, 36anbi12d 624 . . . . . . . . . 10 (𝑥 = 𝑎 → (((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑛)))
3837rspcv 3522 . . . . . . . . 9 (𝑎𝐵 → (∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → ((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑛)))
39 simpl 476 . . . . . . . . 9 (((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑛) → (𝑛 + 𝑎) = 𝑎)
4038, 39syl6com 37 . . . . . . . 8 (∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → (𝑎𝐵 → (𝑛 + 𝑎) = 𝑎))
4140ad2antlr 718 . . . . . . 7 (((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ SGrp) → (𝑎𝐵 → (𝑛 + 𝑎) = 𝑎))
4241imp 397 . . . . . 6 ((((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ SGrp) ∧ 𝑎𝐵) → (𝑛 + 𝑎) = 𝑎)
43 oveq1 6912 . . . . . . . . . . . . 13 (𝑖 = 𝑏 → (𝑖 + 𝑎) = (𝑏 + 𝑎))
4443eqeq1d 2827 . . . . . . . . . . . 12 (𝑖 = 𝑏 → ((𝑖 + 𝑎) = 𝑛 ↔ (𝑏 + 𝑎) = 𝑛))
4544cbvrexv 3384 . . . . . . . . . . 11 (∃𝑖𝐵 (𝑖 + 𝑎) = 𝑛 ↔ ∃𝑏𝐵 (𝑏 + 𝑎) = 𝑛)
4645biimpi 208 . . . . . . . . . 10 (∃𝑖𝐵 (𝑖 + 𝑎) = 𝑛 → ∃𝑏𝐵 (𝑏 + 𝑎) = 𝑛)
4746adantl 475 . . . . . . . . 9 (((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑛) → ∃𝑏𝐵 (𝑏 + 𝑎) = 𝑛)
4838, 47syl6com 37 . . . . . . . 8 (∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → (𝑎𝐵 → ∃𝑏𝐵 (𝑏 + 𝑎) = 𝑛))
4948ad2antlr 718 . . . . . . 7 (((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ SGrp) → (𝑎𝐵 → ∃𝑏𝐵 (𝑏 + 𝑎) = 𝑛))
5049imp 397 . . . . . 6 ((((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ SGrp) ∧ 𝑎𝐵) → ∃𝑏𝐵 (𝑏 + 𝑎) = 𝑛)
5122, 23, 27, 29, 30, 42, 50isgrpde 17797 . . . . 5 (((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ SGrp) → 𝐺 ∈ Grp)
5251ex 403 . . . 4 ((𝑛𝐵 ∧ ∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) → (𝐺 ∈ SGrp → 𝐺 ∈ Grp))
5352rexlimiva 3237 . . 3 (∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → (𝐺 ∈ SGrp → 𝐺 ∈ Grp))
5453impcom 398 . 2 ((𝐺 ∈ SGrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) → 𝐺 ∈ Grp)
5521, 54impbii 201 1 (𝐺 ∈ Grp ↔ (𝐺 ∈ SGrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  wrex 3118  cfv 6123  (class class class)co 6905  Basecbs 16222  +gcplusg 16305  0gc0g 16453  Mgmcmgm 17593  SGrpcsgrp 17636  Mndcmnd 17647  Grpcgrp 17776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-iota 6086  df-fun 6125  df-fv 6131  df-riota 6866  df-ov 6908  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779
This theorem is referenced by:  dfgrp2e  17802  dfgrp3  17868
  Copyright terms: Public domain W3C validator