| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | grpsgrp 18978 | . . 3
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) | 
| 2 |  | grpmnd 18958 | . . . . 5
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | 
| 3 |  | dfgrp2.b | . . . . . 6
⊢ 𝐵 = (Base‘𝐺) | 
| 4 |  | eqid 2737 | . . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 5 | 3, 4 | mndidcl 18762 | . . . . 5
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ 𝐵) | 
| 6 | 2, 5 | syl 17 | . . . 4
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) | 
| 7 |  | oveq1 7438 | . . . . . . . 8
⊢ (𝑛 = (0g‘𝐺) → (𝑛 + 𝑥) = ((0g‘𝐺) + 𝑥)) | 
| 8 | 7 | eqeq1d 2739 | . . . . . . 7
⊢ (𝑛 = (0g‘𝐺) → ((𝑛 + 𝑥) = 𝑥 ↔ ((0g‘𝐺) + 𝑥) = 𝑥)) | 
| 9 |  | eqeq2 2749 | . . . . . . . 8
⊢ (𝑛 = (0g‘𝐺) → ((𝑖 + 𝑥) = 𝑛 ↔ (𝑖 + 𝑥) = (0g‘𝐺))) | 
| 10 | 9 | rexbidv 3179 | . . . . . . 7
⊢ (𝑛 = (0g‘𝐺) → (∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛 ↔ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺))) | 
| 11 | 8, 10 | anbi12d 632 | . . . . . 6
⊢ (𝑛 = (0g‘𝐺) → (((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)))) | 
| 12 | 11 | ralbidv 3178 | . . . . 5
⊢ (𝑛 = (0g‘𝐺) → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ∀𝑥 ∈ 𝐵 (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)))) | 
| 13 | 12 | adantl 481 | . . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑛 = (0g‘𝐺)) → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ∀𝑥 ∈ 𝐵 (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)))) | 
| 14 |  | dfgrp2.p | . . . . . . . 8
⊢  + =
(+g‘𝐺) | 
| 15 | 3, 14, 4 | mndlid 18767 | . . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺) + 𝑥) = 𝑥) | 
| 16 | 2, 15 | sylan 580 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺) + 𝑥) = 𝑥) | 
| 17 | 3, 14, 4 | grpinvex 18961 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺)) | 
| 18 | 16, 17 | jca 511 | . . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺))) | 
| 19 | 18 | ralrimiva 3146 | . . . 4
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 (((0g‘𝐺) + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = (0g‘𝐺))) | 
| 20 | 6, 13, 19 | rspcedvd 3624 | . . 3
⊢ (𝐺 ∈ Grp → ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) | 
| 21 | 1, 20 | jca 511 | . 2
⊢ (𝐺 ∈ Grp → (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) | 
| 22 | 3 | a1i 11 | . . . . . 6
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝐵 = (Base‘𝐺)) | 
| 23 | 14 | a1i 11 | . . . . . 6
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → + =
(+g‘𝐺)) | 
| 24 |  | sgrpmgm 18737 | . . . . . . . 8
⊢ (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm) | 
| 25 | 24 | adantl 481 | . . . . . . 7
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝐺 ∈ Mgm) | 
| 26 | 3, 14 | mgmcl 18656 | . . . . . . 7
⊢ ((𝐺 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ∈ 𝐵) | 
| 27 | 25, 26 | syl3an1 1164 | . . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ∈ 𝐵) | 
| 28 | 3, 14 | sgrpass 18738 | . . . . . . 7
⊢ ((𝐺 ∈ Smgrp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) | 
| 29 | 28 | adantll 714 | . . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) | 
| 30 |  | simpll 767 | . . . . . 6
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝑛 ∈ 𝐵) | 
| 31 |  | oveq2 7439 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → (𝑛 + 𝑥) = (𝑛 + 𝑎)) | 
| 32 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → 𝑥 = 𝑎) | 
| 33 | 31, 32 | eqeq12d 2753 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → ((𝑛 + 𝑥) = 𝑥 ↔ (𝑛 + 𝑎) = 𝑎)) | 
| 34 |  | oveq2 7439 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (𝑖 + 𝑥) = (𝑖 + 𝑎)) | 
| 35 | 34 | eqeq1d 2739 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ((𝑖 + 𝑥) = 𝑛 ↔ (𝑖 + 𝑎) = 𝑛)) | 
| 36 | 35 | rexbidv 3179 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛 ↔ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛)) | 
| 37 | 33, 36 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) ↔ ((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛))) | 
| 38 | 37 | rspcv 3618 | . . . . . . . . 9
⊢ (𝑎 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → ((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛))) | 
| 39 |  | simpl 482 | . . . . . . . . 9
⊢ (((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛) → (𝑛 + 𝑎) = 𝑎) | 
| 40 | 38, 39 | syl6com 37 | . . . . . . . 8
⊢
(∀𝑥 ∈
𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝑎 ∈ 𝐵 → (𝑛 + 𝑎) = 𝑎)) | 
| 41 | 40 | ad2antlr 727 | . . . . . . 7
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → (𝑎 ∈ 𝐵 → (𝑛 + 𝑎) = 𝑎)) | 
| 42 | 41 | imp 406 | . . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ 𝑎 ∈ 𝐵) → (𝑛 + 𝑎) = 𝑎) | 
| 43 |  | oveq1 7438 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝑏 → (𝑖 + 𝑎) = (𝑏 + 𝑎)) | 
| 44 | 43 | eqeq1d 2739 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝑏 → ((𝑖 + 𝑎) = 𝑛 ↔ (𝑏 + 𝑎) = 𝑛)) | 
| 45 | 44 | cbvrexvw 3238 | . . . . . . . . . . 11
⊢
(∃𝑖 ∈
𝐵 (𝑖 + 𝑎) = 𝑛 ↔ ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) | 
| 46 | 45 | biimpi 216 | . . . . . . . . . 10
⊢
(∃𝑖 ∈
𝐵 (𝑖 + 𝑎) = 𝑛 → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) | 
| 47 | 46 | adantl 481 | . . . . . . . . 9
⊢ (((𝑛 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑛) → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) | 
| 48 | 38, 47 | syl6com 37 | . . . . . . . 8
⊢
(∀𝑥 ∈
𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝑎 ∈ 𝐵 → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛)) | 
| 49 | 48 | ad2antlr 727 | . . . . . . 7
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → (𝑎 ∈ 𝐵 → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛)) | 
| 50 | 49 | imp 406 | . . . . . 6
⊢ ((((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) ∧ 𝑎 ∈ 𝐵) → ∃𝑏 ∈ 𝐵 (𝑏 + 𝑎) = 𝑛) | 
| 51 | 22, 23, 27, 29, 30, 42, 50 | isgrpde 18975 | . . . . 5
⊢ (((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) ∧ 𝐺 ∈ Smgrp) → 𝐺 ∈ Grp) | 
| 52 | 51 | ex 412 | . . . 4
⊢ ((𝑛 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) → (𝐺 ∈ Smgrp → 𝐺 ∈ Grp)) | 
| 53 | 52 | rexlimiva 3147 | . . 3
⊢
(∃𝑛 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛) → (𝐺 ∈ Smgrp → 𝐺 ∈ Grp)) | 
| 54 | 53 | impcom 407 | . 2
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛)) → 𝐺 ∈ Grp) | 
| 55 | 21, 54 | impbii 209 | 1
⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) |