MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpideu Structured version   Visualization version   GIF version

Theorem grpideu 18760
Description: The two-sided identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
grpcl.b 𝐵 = (Base‘𝐺)
grpcl.p + = (+g𝐺)
grpinvex.p 0 = (0g𝐺)
Assertion
Ref Expression
grpideu (𝐺 ∈ Grp → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
Distinct variable groups:   𝑥,𝑢,𝐵   𝑢,𝐺,𝑥   𝑢, + ,𝑥   𝑥, 0
Allowed substitution hint:   0 (𝑢)

Proof of Theorem grpideu
StepHypRef Expression
1 grpmnd 18756 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpcl.b . . 3 𝐵 = (Base‘𝐺)
3 grpcl.p . . 3 + = (+g𝐺)
42, 3mndideu 18568 . 2 (𝐺 ∈ Mnd → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
51, 4syl 17 1 (𝐺 ∈ Grp → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3065  ∃!wreu 3352  cfv 6497  (class class class)co 7358  Basecbs 17084  +gcplusg 17134  0gc0g 17322  Mndcmnd 18557  Grpcgrp 18749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-iota 6449  df-fv 6505  df-ov 7361  df-mgm 18498  df-sgrp 18547  df-mnd 18558  df-grp 18752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator