MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinveu Structured version   Visualization version   GIF version

Theorem grpinveu 18913
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b 𝐵 = (Base‘𝐺)
grpinveu.p + = (+g𝐺)
grpinveu.o 0 = (0g𝐺)
Assertion
Ref Expression
grpinveu ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦, +   𝑦, 0   𝑦,𝑋

Proof of Theorem grpinveu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 grpinveu.b . . . 4 𝐵 = (Base‘𝐺)
2 grpinveu.p . . . 4 + = (+g𝐺)
3 grpinveu.o . . . 4 0 = (0g𝐺)
41, 2, 3grpinvex 18882 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
5 eqtr3 2752 . . . . . . . . . . . 12 (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → (𝑦 + 𝑋) = (𝑧 + 𝑋))
61, 2grprcan 18912 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → ((𝑦 + 𝑋) = (𝑧 + 𝑋) ↔ 𝑦 = 𝑧))
75, 6imbitrid 244 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
873exp2 1355 . . . . . . . . . 10 (𝐺 ∈ Grp → (𝑦𝐵 → (𝑧𝐵 → (𝑋𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)))))
98com24 95 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑧𝐵 → (𝑦𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)))))
109imp41 425 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑧𝐵) ∧ 𝑦𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
1110an32s 652 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
1211expd 415 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
1312ralrimdva 3134 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((𝑦 + 𝑋) = 0 → ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
1413ancld 550 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧))))
1514reximdva 3147 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (∃𝑦𝐵 (𝑦 + 𝑋) = 0 → ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧))))
164, 15mpd 15 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
17 oveq1 7397 . . . 4 (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋))
1817eqeq1d 2732 . . 3 (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 ))
1918reu8 3707 . 2 (∃!𝑦𝐵 (𝑦 + 𝑋) = 0 ↔ ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
2016, 19sylibr 234 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875
This theorem is referenced by:  grpinvf  18925  grplinv  18928  isgrpinv  18932
  Copyright terms: Public domain W3C validator