Step | Hyp | Ref
| Expression |
1 | | grpinveu.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
2 | | grpinveu.p |
. . . 4
⊢ + =
(+g‘𝐺) |
3 | | grpinveu.o |
. . . 4
⊢ 0 =
(0g‘𝐺) |
4 | 1, 2, 3 | grpinvex 18502 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
5 | | eqtr3 2764 |
. . . . . . . . . . . 12
⊢ (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → (𝑦 + 𝑋) = (𝑧 + 𝑋)) |
6 | 1, 2 | grprcan 18528 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑦 + 𝑋) = (𝑧 + 𝑋) ↔ 𝑦 = 𝑧)) |
7 | 5, 6 | syl5ib 243 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
8 | 7 | 3exp2 1352 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp → (𝑦 ∈ 𝐵 → (𝑧 ∈ 𝐵 → (𝑋 ∈ 𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))))) |
9 | 8 | com24 95 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑧 ∈ 𝐵 → (𝑦 ∈ 𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))))) |
10 | 9 | imp41 425 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
11 | 10 | an32s 648 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)) |
12 | 11 | expd 415 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
13 | 12 | ralrimdva 3112 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
14 | 13 | ancld 550 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧)))) |
15 | 14 | reximdva 3202 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧)))) |
16 | 4, 15 | mpd 15 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
17 | | oveq1 7262 |
. . . 4
⊢ (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋)) |
18 | 17 | eqeq1d 2740 |
. . 3
⊢ (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 )) |
19 | 18 | reu8 3663 |
. 2
⊢
(∃!𝑦 ∈
𝐵 (𝑦 + 𝑋) = 0 ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧 ∈ 𝐵 ((𝑧 + 𝑋) = 0 → 𝑦 = 𝑧))) |
20 | 16, 19 | sylibr 233 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |