MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinveu Structured version   Visualization version   GIF version

Theorem grpinveu 19014
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b 𝐵 = (Base‘𝐺)
grpinveu.p + = (+g𝐺)
grpinveu.o 0 = (0g𝐺)
Assertion
Ref Expression
grpinveu ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦, +   𝑦, 0   𝑦,𝑋

Proof of Theorem grpinveu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 grpinveu.b . . . 4 𝐵 = (Base‘𝐺)
2 grpinveu.p . . . 4 + = (+g𝐺)
3 grpinveu.o . . . 4 0 = (0g𝐺)
41, 2, 3grpinvex 18983 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
5 eqtr3 2766 . . . . . . . . . . . 12 (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → (𝑦 + 𝑋) = (𝑧 + 𝑋))
61, 2grprcan 19013 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → ((𝑦 + 𝑋) = (𝑧 + 𝑋) ↔ 𝑦 = 𝑧))
75, 6imbitrid 244 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
873exp2 1354 . . . . . . . . . 10 (𝐺 ∈ Grp → (𝑦𝐵 → (𝑧𝐵 → (𝑋𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)))))
98com24 95 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑧𝐵 → (𝑦𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)))))
109imp41 425 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑧𝐵) ∧ 𝑦𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
1110an32s 651 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
1211expd 415 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
1312ralrimdva 3160 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((𝑦 + 𝑋) = 0 → ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
1413ancld 550 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧))))
1514reximdva 3174 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (∃𝑦𝐵 (𝑦 + 𝑋) = 0 → ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧))))
164, 15mpd 15 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
17 oveq1 7455 . . . 4 (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋))
1817eqeq1d 2742 . . 3 (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 ))
1918reu8 3755 . 2 (∃!𝑦𝐵 (𝑦 + 𝑋) = 0 ↔ ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
2016, 19sylibr 234 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976
This theorem is referenced by:  grpinvf  19026  grplinv  19029  isgrpinv  19033
  Copyright terms: Public domain W3C validator