| Step | Hyp | Ref
| Expression |
| 1 | | grprcan.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | grprcan.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
| 3 | | eqid 2737 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 4 | 1, 2, 3 | grpinvex 18961 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑍) = (0g‘𝐺)) |
| 5 | 4 | 3ad2antr3 1191 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑍) = (0g‘𝐺)) |
| 6 | | simprr 773 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + 𝑍) = (𝑌 + 𝑍)) |
| 7 | 6 | oveq1d 7446 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = ((𝑌 + 𝑍) + 𝑦)) |
| 8 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝐺 ∈ Grp) |
| 9 | 1, 2 | grpass 18960 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
| 10 | 8, 9 | sylan 580 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
| 11 | | simplr1 1216 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋 ∈ 𝐵) |
| 12 | | simplr3 1218 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑍 ∈ 𝐵) |
| 13 | | simprll 779 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑦 ∈ 𝐵) |
| 14 | 10, 11, 12, 13 | caovassd 7632 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = (𝑋 + (𝑍 + 𝑦))) |
| 15 | | simplr2 1217 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑌 ∈ 𝐵) |
| 16 | 10, 15, 12, 13 | caovassd 7632 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑌 + 𝑍) + 𝑦) = (𝑌 + (𝑍 + 𝑦))) |
| 17 | 7, 14, 16 | 3eqtr3d 2785 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑌 + (𝑍 + 𝑦))) |
| 18 | 1, 2 | grpcl 18959 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢 + 𝑣) ∈ 𝐵) |
| 19 | 8, 18 | syl3an1 1164 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢 + 𝑣) ∈ 𝐵) |
| 20 | 1, 3 | grpidcl 18983 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
| 21 | 8, 20 | syl 17 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (0g‘𝐺) ∈ 𝐵) |
| 22 | 1, 2, 3 | grplid 18985 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵) → ((0g‘𝐺) + 𝑢) = 𝑢) |
| 23 | 8, 22 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢 ∈ 𝐵) → ((0g‘𝐺) + 𝑢) = 𝑢) |
| 24 | 1, 2, 3 | grpinvex 18961 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵) → ∃𝑣 ∈ 𝐵 (𝑣 + 𝑢) = (0g‘𝐺)) |
| 25 | 8, 24 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢 ∈ 𝐵) → ∃𝑣 ∈ 𝐵 (𝑣 + 𝑢) = (0g‘𝐺)) |
| 26 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) |
| 27 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 28 | | simprlr 780 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑦 + 𝑍) = (0g‘𝐺)) |
| 29 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍 ∈ 𝐵) → (𝑦 + 𝑍) = (0g‘𝐺)) |
| 30 | 19, 21, 23, 10, 25, 26, 27, 29 | grpinva 18687 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍 ∈ 𝐵) → (𝑍 + 𝑦) = (0g‘𝐺)) |
| 31 | 12, 30 | mpdan 687 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑍 + 𝑦) = (0g‘𝐺)) |
| 32 | 31 | oveq2d 7447 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑋 + (0g‘𝐺))) |
| 33 | 31 | oveq2d 7447 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (𝑍 + 𝑦)) = (𝑌 + (0g‘𝐺))) |
| 34 | 17, 32, 33 | 3eqtr3d 2785 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g‘𝐺)) = (𝑌 + (0g‘𝐺))) |
| 35 | 1, 2, 3, 8, 11 | grpridd 18988 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g‘𝐺)) = 𝑋) |
| 36 | 1, 2, 3, 8, 15 | grpridd 18988 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (0g‘𝐺)) = 𝑌) |
| 37 | 34, 35, 36 | 3eqtr3d 2785 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋 = 𝑌) |
| 38 | 37 | expr 456 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺))) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌)) |
| 39 | 5, 38 | rexlimddv 3161 |
. 2
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌)) |
| 40 | | oveq1 7438 |
. 2
⊢ (𝑋 = 𝑌 → (𝑋 + 𝑍) = (𝑌 + 𝑍)) |
| 41 | 39, 40 | impbid1 225 |
1
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌)) |