MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprcan Structured version   Visualization version   GIF version

Theorem grprcan 18854
Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grprcan.b 𝐵 = (Base‘𝐺)
grprcan.p + = (+g𝐺)
Assertion
Ref Expression
grprcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))

Proof of Theorem grprcan
Dummy variables 𝑣 𝑢 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprcan.b . . . . 5 𝐵 = (Base‘𝐺)
2 grprcan.p . . . . 5 + = (+g𝐺)
3 eqid 2732 . . . . 5 (0g𝐺) = (0g𝐺)
41, 2, 3grpinvex 18825 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ∃𝑦𝐵 (𝑦 + 𝑍) = (0g𝐺))
543ad2antr3 1190 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ∃𝑦𝐵 (𝑦 + 𝑍) = (0g𝐺))
6 simprr 771 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + 𝑍) = (𝑌 + 𝑍))
76oveq1d 7420 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = ((𝑌 + 𝑍) + 𝑦))
8 simpll 765 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝐺 ∈ Grp)
91, 2grpass 18824 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
108, 9sylan 580 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
11 simplr1 1215 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋𝐵)
12 simplr3 1217 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑍𝐵)
13 simprll 777 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑦𝐵)
1410, 11, 12, 13caovassd 7602 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = (𝑋 + (𝑍 + 𝑦)))
15 simplr2 1216 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑌𝐵)
1610, 15, 12, 13caovassd 7602 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑌 + 𝑍) + 𝑦) = (𝑌 + (𝑍 + 𝑦)))
177, 14, 163eqtr3d 2780 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑌 + (𝑍 + 𝑦)))
181, 2grpcl 18823 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵𝑣𝐵) → (𝑢 + 𝑣) ∈ 𝐵)
198, 18syl3an1 1163 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵𝑣𝐵) → (𝑢 + 𝑣) ∈ 𝐵)
201, 3grpidcl 18846 . . . . . . . . . 10 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
218, 20syl 17 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (0g𝐺) ∈ 𝐵)
221, 2, 3grplid 18848 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
238, 22sylan 580 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
241, 2, 3grpinvex 18825 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ∃𝑣𝐵 (𝑣 + 𝑢) = (0g𝐺))
258, 24sylan 580 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵) → ∃𝑣𝐵 (𝑣 + 𝑢) = (0g𝐺))
26 simpr 485 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → 𝑍𝐵)
2713adantr 481 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → 𝑦𝐵)
28 simprlr 778 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑦 + 𝑍) = (0g𝐺))
2928adantr 481 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → (𝑦 + 𝑍) = (0g𝐺))
3019, 21, 23, 10, 25, 26, 27, 29grpinva 18589 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → (𝑍 + 𝑦) = (0g𝐺))
3112, 30mpdan 685 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑍 + 𝑦) = (0g𝐺))
3231oveq2d 7421 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑋 + (0g𝐺)))
3331oveq2d 7421 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (𝑍 + 𝑦)) = (𝑌 + (0g𝐺)))
3417, 32, 333eqtr3d 2780 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g𝐺)) = (𝑌 + (0g𝐺)))
351, 2, 3, 8, 11grpridd 18851 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g𝐺)) = 𝑋)
361, 2, 3, 8, 15grpridd 18851 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (0g𝐺)) = 𝑌)
3734, 35, 363eqtr3d 2780 . . . 4 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋 = 𝑌)
3837expr 457 . . 3 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺))) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
395, 38rexlimddv 3161 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
40 oveq1 7412 . 2 (𝑋 = 𝑌 → (𝑋 + 𝑍) = (𝑌 + 𝑍))
4139, 40impbid1 224 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Grpcgrp 18815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-riota 7361  df-ov 7408  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818
This theorem is referenced by:  grpinveu  18855  grpid  18856  grpidlcan  18885  grpinvssd  18896  grpsubrcan  18900  grpsubadd  18907  sylow1lem4  19463  ringcom  20090  ringrz  20101  rhmunitinv  20282  lmodcom  20510  ogrpaddlt  32222  grpcominv1  41079  isnumbasgrplem2  41831  rngrz  46651  grptcepi  47670
  Copyright terms: Public domain W3C validator