MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprcan Structured version   Visualization version   GIF version

Theorem grprcan 18937
Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grprcan.b 𝐵 = (Base‘𝐺)
grprcan.p + = (+g𝐺)
Assertion
Ref Expression
grprcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))

Proof of Theorem grprcan
Dummy variables 𝑣 𝑢 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprcan.b . . . . 5 𝐵 = (Base‘𝐺)
2 grprcan.p . . . . 5 + = (+g𝐺)
3 eqid 2728 . . . . 5 (0g𝐺) = (0g𝐺)
41, 2, 3grpinvex 18907 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ∃𝑦𝐵 (𝑦 + 𝑍) = (0g𝐺))
543ad2antr3 1187 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ∃𝑦𝐵 (𝑦 + 𝑍) = (0g𝐺))
6 simprr 771 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + 𝑍) = (𝑌 + 𝑍))
76oveq1d 7441 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = ((𝑌 + 𝑍) + 𝑦))
8 simpll 765 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝐺 ∈ Grp)
91, 2grpass 18906 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
108, 9sylan 578 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
11 simplr1 1212 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋𝐵)
12 simplr3 1214 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑍𝐵)
13 simprll 777 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑦𝐵)
1410, 11, 12, 13caovassd 7626 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = (𝑋 + (𝑍 + 𝑦)))
15 simplr2 1213 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑌𝐵)
1610, 15, 12, 13caovassd 7626 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑌 + 𝑍) + 𝑦) = (𝑌 + (𝑍 + 𝑦)))
177, 14, 163eqtr3d 2776 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑌 + (𝑍 + 𝑦)))
181, 2grpcl 18905 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵𝑣𝐵) → (𝑢 + 𝑣) ∈ 𝐵)
198, 18syl3an1 1160 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵𝑣𝐵) → (𝑢 + 𝑣) ∈ 𝐵)
201, 3grpidcl 18929 . . . . . . . . . 10 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
218, 20syl 17 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (0g𝐺) ∈ 𝐵)
221, 2, 3grplid 18931 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
238, 22sylan 578 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
241, 2, 3grpinvex 18907 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ∃𝑣𝐵 (𝑣 + 𝑢) = (0g𝐺))
258, 24sylan 578 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵) → ∃𝑣𝐵 (𝑣 + 𝑢) = (0g𝐺))
26 simpr 483 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → 𝑍𝐵)
2713adantr 479 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → 𝑦𝐵)
28 simprlr 778 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑦 + 𝑍) = (0g𝐺))
2928adantr 479 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → (𝑦 + 𝑍) = (0g𝐺))
3019, 21, 23, 10, 25, 26, 27, 29grpinva 18641 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → (𝑍 + 𝑦) = (0g𝐺))
3112, 30mpdan 685 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑍 + 𝑦) = (0g𝐺))
3231oveq2d 7442 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑋 + (0g𝐺)))
3331oveq2d 7442 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (𝑍 + 𝑦)) = (𝑌 + (0g𝐺)))
3417, 32, 333eqtr3d 2776 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g𝐺)) = (𝑌 + (0g𝐺)))
351, 2, 3, 8, 11grpridd 18934 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g𝐺)) = 𝑋)
361, 2, 3, 8, 15grpridd 18934 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (0g𝐺)) = 𝑌)
3734, 35, 363eqtr3d 2776 . . . 4 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋 = 𝑌)
3837expr 455 . . 3 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺))) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
395, 38rexlimddv 3158 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
40 oveq1 7433 . 2 (𝑋 = 𝑌 → (𝑋 + 𝑍) = (𝑌 + 𝑍))
4139, 40impbid1 224 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3067  cfv 6553  (class class class)co 7426  Basecbs 17187  +gcplusg 17240  0gc0g 17428  Grpcgrp 18897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fv 6561  df-riota 7382  df-ov 7429  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900
This theorem is referenced by:  grpinveu  18938  grpid  18939  grpidlcan  18968  grpraddf1o  18977  grpinvssd  18980  grpsubrcan  18984  grpsubadd  18991  sylow1lem4  19563  rngrz  20113  ringcom  20223  rhmunitinv  20457  lmodcom  20798  ogrpaddlt  32818  r1pid2  33312  grpcominv1  41779  isnumbasgrplem2  42559  grptcepi  48181
  Copyright terms: Public domain W3C validator