MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprcan Structured version   Visualization version   GIF version

Theorem grprcan 18878
Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grprcan.b 𝐵 = (Base‘𝐺)
grprcan.p + = (+g𝐺)
Assertion
Ref Expression
grprcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))

Proof of Theorem grprcan
Dummy variables 𝑣 𝑢 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprcan.b . . . . 5 𝐵 = (Base‘𝐺)
2 grprcan.p . . . . 5 + = (+g𝐺)
3 eqid 2730 . . . . 5 (0g𝐺) = (0g𝐺)
41, 2, 3grpinvex 18848 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ∃𝑦𝐵 (𝑦 + 𝑍) = (0g𝐺))
543ad2antr3 1191 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ∃𝑦𝐵 (𝑦 + 𝑍) = (0g𝐺))
6 simprr 772 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + 𝑍) = (𝑌 + 𝑍))
76oveq1d 7356 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = ((𝑌 + 𝑍) + 𝑦))
8 simpll 766 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝐺 ∈ Grp)
91, 2grpass 18847 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
108, 9sylan 580 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
11 simplr1 1216 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋𝐵)
12 simplr3 1218 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑍𝐵)
13 simprll 778 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑦𝐵)
1410, 11, 12, 13caovassd 7540 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = (𝑋 + (𝑍 + 𝑦)))
15 simplr2 1217 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑌𝐵)
1610, 15, 12, 13caovassd 7540 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑌 + 𝑍) + 𝑦) = (𝑌 + (𝑍 + 𝑦)))
177, 14, 163eqtr3d 2773 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑌 + (𝑍 + 𝑦)))
181, 2grpcl 18846 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵𝑣𝐵) → (𝑢 + 𝑣) ∈ 𝐵)
198, 18syl3an1 1163 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵𝑣𝐵) → (𝑢 + 𝑣) ∈ 𝐵)
201, 3grpidcl 18870 . . . . . . . . . 10 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
218, 20syl 17 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (0g𝐺) ∈ 𝐵)
221, 2, 3grplid 18872 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
238, 22sylan 580 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
241, 2, 3grpinvex 18848 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ∃𝑣𝐵 (𝑣 + 𝑢) = (0g𝐺))
258, 24sylan 580 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵) → ∃𝑣𝐵 (𝑣 + 𝑢) = (0g𝐺))
26 simpr 484 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → 𝑍𝐵)
2713adantr 480 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → 𝑦𝐵)
28 simprlr 779 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑦 + 𝑍) = (0g𝐺))
2928adantr 480 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → (𝑦 + 𝑍) = (0g𝐺))
3019, 21, 23, 10, 25, 26, 27, 29grpinva 18574 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → (𝑍 + 𝑦) = (0g𝐺))
3112, 30mpdan 687 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑍 + 𝑦) = (0g𝐺))
3231oveq2d 7357 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑋 + (0g𝐺)))
3331oveq2d 7357 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (𝑍 + 𝑦)) = (𝑌 + (0g𝐺)))
3417, 32, 333eqtr3d 2773 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g𝐺)) = (𝑌 + (0g𝐺)))
351, 2, 3, 8, 11grpridd 18875 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g𝐺)) = 𝑋)
361, 2, 3, 8, 15grpridd 18875 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (0g𝐺)) = 𝑌)
3734, 35, 363eqtr3d 2773 . . . 4 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋 = 𝑌)
3837expr 456 . . 3 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺))) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
395, 38rexlimddv 3137 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
40 oveq1 7348 . 2 (𝑋 = 𝑌 → (𝑋 + 𝑍) = (𝑌 + 𝑍))
4139, 40impbid1 225 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wrex 3054  cfv 6477  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  0gc0g 17335  Grpcgrp 18838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-riota 7298  df-ov 7344  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841
This theorem is referenced by:  grpinveu  18879  grpid  18880  grpidlcan  18909  grpraddf1o  18919  grpinvssd  18922  grpsubrcan  18926  grpsubadd  18933  sylow1lem4  19506  ogrpaddlt  20043  rngrz  20077  ringcom  20191  rhmunitinv  20419  lmodcom  20834  r1pid2  26087  cntrval2  33130  ply1dg1rt  33533  r1pid2OLD  33559  grpcominv1  42520  isnumbasgrplem2  43116  grptcepi  49605
  Copyright terms: Public domain W3C validator