MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprcan Structured version   Visualization version   GIF version

Theorem grprcan 18956
Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grprcan.b 𝐵 = (Base‘𝐺)
grprcan.p + = (+g𝐺)
Assertion
Ref Expression
grprcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))

Proof of Theorem grprcan
Dummy variables 𝑣 𝑢 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprcan.b . . . . 5 𝐵 = (Base‘𝐺)
2 grprcan.p . . . . 5 + = (+g𝐺)
3 eqid 2735 . . . . 5 (0g𝐺) = (0g𝐺)
41, 2, 3grpinvex 18926 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ∃𝑦𝐵 (𝑦 + 𝑍) = (0g𝐺))
543ad2antr3 1191 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ∃𝑦𝐵 (𝑦 + 𝑍) = (0g𝐺))
6 simprr 772 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + 𝑍) = (𝑌 + 𝑍))
76oveq1d 7420 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = ((𝑌 + 𝑍) + 𝑦))
8 simpll 766 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝐺 ∈ Grp)
91, 2grpass 18925 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
108, 9sylan 580 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
11 simplr1 1216 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋𝐵)
12 simplr3 1218 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑍𝐵)
13 simprll 778 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑦𝐵)
1410, 11, 12, 13caovassd 7606 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = (𝑋 + (𝑍 + 𝑦)))
15 simplr2 1217 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑌𝐵)
1610, 15, 12, 13caovassd 7606 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑌 + 𝑍) + 𝑦) = (𝑌 + (𝑍 + 𝑦)))
177, 14, 163eqtr3d 2778 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑌 + (𝑍 + 𝑦)))
181, 2grpcl 18924 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵𝑣𝐵) → (𝑢 + 𝑣) ∈ 𝐵)
198, 18syl3an1 1163 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵𝑣𝐵) → (𝑢 + 𝑣) ∈ 𝐵)
201, 3grpidcl 18948 . . . . . . . . . 10 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
218, 20syl 17 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (0g𝐺) ∈ 𝐵)
221, 2, 3grplid 18950 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
238, 22sylan 580 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
241, 2, 3grpinvex 18926 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ∃𝑣𝐵 (𝑣 + 𝑢) = (0g𝐺))
258, 24sylan 580 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵) → ∃𝑣𝐵 (𝑣 + 𝑢) = (0g𝐺))
26 simpr 484 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → 𝑍𝐵)
2713adantr 480 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → 𝑦𝐵)
28 simprlr 779 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑦 + 𝑍) = (0g𝐺))
2928adantr 480 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → (𝑦 + 𝑍) = (0g𝐺))
3019, 21, 23, 10, 25, 26, 27, 29grpinva 18652 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → (𝑍 + 𝑦) = (0g𝐺))
3112, 30mpdan 687 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑍 + 𝑦) = (0g𝐺))
3231oveq2d 7421 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑋 + (0g𝐺)))
3331oveq2d 7421 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (𝑍 + 𝑦)) = (𝑌 + (0g𝐺)))
3417, 32, 333eqtr3d 2778 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g𝐺)) = (𝑌 + (0g𝐺)))
351, 2, 3, 8, 11grpridd 18953 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g𝐺)) = 𝑋)
361, 2, 3, 8, 15grpridd 18953 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (0g𝐺)) = 𝑌)
3734, 35, 363eqtr3d 2778 . . . 4 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋 = 𝑌)
3837expr 456 . . 3 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺))) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
395, 38rexlimddv 3147 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
40 oveq1 7412 . 2 (𝑋 = 𝑌 → (𝑋 + 𝑍) = (𝑌 + 𝑍))
4139, 40impbid1 225 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Grpcgrp 18916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-riota 7362  df-ov 7408  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919
This theorem is referenced by:  grpinveu  18957  grpid  18958  grpidlcan  18987  grpraddf1o  18997  grpinvssd  19000  grpsubrcan  19004  grpsubadd  19011  sylow1lem4  19582  rngrz  20126  ringcom  20240  rhmunitinv  20471  lmodcom  20865  r1pid2  26119  ogrpaddlt  33085  ply1dg1rt  33592  r1pid2OLD  33618  grpcominv1  42531  isnumbasgrplem2  43128  grptcepi  49471
  Copyright terms: Public domain W3C validator