MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprcan Structured version   Visualization version   GIF version

Theorem grprcan 18991
Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grprcan.b 𝐵 = (Base‘𝐺)
grprcan.p + = (+g𝐺)
Assertion
Ref Expression
grprcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))

Proof of Theorem grprcan
Dummy variables 𝑣 𝑢 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprcan.b . . . . 5 𝐵 = (Base‘𝐺)
2 grprcan.p . . . . 5 + = (+g𝐺)
3 eqid 2737 . . . . 5 (0g𝐺) = (0g𝐺)
41, 2, 3grpinvex 18961 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ∃𝑦𝐵 (𝑦 + 𝑍) = (0g𝐺))
543ad2antr3 1191 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ∃𝑦𝐵 (𝑦 + 𝑍) = (0g𝐺))
6 simprr 773 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + 𝑍) = (𝑌 + 𝑍))
76oveq1d 7446 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = ((𝑌 + 𝑍) + 𝑦))
8 simpll 767 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝐺 ∈ Grp)
91, 2grpass 18960 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
108, 9sylan 580 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
11 simplr1 1216 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋𝐵)
12 simplr3 1218 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑍𝐵)
13 simprll 779 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑦𝐵)
1410, 11, 12, 13caovassd 7632 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = (𝑋 + (𝑍 + 𝑦)))
15 simplr2 1217 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑌𝐵)
1610, 15, 12, 13caovassd 7632 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑌 + 𝑍) + 𝑦) = (𝑌 + (𝑍 + 𝑦)))
177, 14, 163eqtr3d 2785 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑌 + (𝑍 + 𝑦)))
181, 2grpcl 18959 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵𝑣𝐵) → (𝑢 + 𝑣) ∈ 𝐵)
198, 18syl3an1 1164 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵𝑣𝐵) → (𝑢 + 𝑣) ∈ 𝐵)
201, 3grpidcl 18983 . . . . . . . . . 10 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
218, 20syl 17 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (0g𝐺) ∈ 𝐵)
221, 2, 3grplid 18985 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
238, 22sylan 580 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵) → ((0g𝐺) + 𝑢) = 𝑢)
241, 2, 3grpinvex 18961 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝐵) → ∃𝑣𝐵 (𝑣 + 𝑢) = (0g𝐺))
258, 24sylan 580 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢𝐵) → ∃𝑣𝐵 (𝑣 + 𝑢) = (0g𝐺))
26 simpr 484 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → 𝑍𝐵)
2713adantr 480 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → 𝑦𝐵)
28 simprlr 780 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑦 + 𝑍) = (0g𝐺))
2928adantr 480 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → (𝑦 + 𝑍) = (0g𝐺))
3019, 21, 23, 10, 25, 26, 27, 29grpinva 18687 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍𝐵) → (𝑍 + 𝑦) = (0g𝐺))
3112, 30mpdan 687 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑍 + 𝑦) = (0g𝐺))
3231oveq2d 7447 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑋 + (0g𝐺)))
3331oveq2d 7447 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (𝑍 + 𝑦)) = (𝑌 + (0g𝐺)))
3417, 32, 333eqtr3d 2785 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g𝐺)) = (𝑌 + (0g𝐺)))
351, 2, 3, 8, 11grpridd 18988 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g𝐺)) = 𝑋)
361, 2, 3, 8, 15grpridd 18988 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (0g𝐺)) = 𝑌)
3734, 35, 363eqtr3d 2785 . . . 4 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ ((𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋 = 𝑌)
3837expr 456 . . 3 (((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑍) = (0g𝐺))) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
395, 38rexlimddv 3161 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
40 oveq1 7438 . 2 (𝑋 = 𝑌 → (𝑋 + 𝑍) = (𝑌 + 𝑍))
4139, 40impbid1 225 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954
This theorem is referenced by:  grpinveu  18992  grpid  18993  grpidlcan  19022  grpraddf1o  19032  grpinvssd  19035  grpsubrcan  19039  grpsubadd  19046  sylow1lem4  19619  rngrz  20163  ringcom  20277  rhmunitinv  20511  lmodcom  20906  r1pid2  26201  ogrpaddlt  33094  ply1dg1rt  33604  r1pid2OLD  33629  grpcominv1  42518  isnumbasgrplem2  43116  grptcepi  49191
  Copyright terms: Public domain W3C validator