| Metamath
Proof Explorer Theorem List (p. 190 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dfgrp2 18901* | Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 18875, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) | ||
| Theorem | dfgrp2e 18902* | Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑥) = 𝑛))) | ||
| Theorem | isgrpix 18903* | Properties that determine a group. Read 𝑁 as 𝑁(𝑥). Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
| ⊢ 𝐵 ∈ V & ⊢ + ∈ V & ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ 0 ∈ 𝐵 & ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) & ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) ⇒ ⊢ 𝐺 ∈ Grp | ||
| Theorem | grpidcl 18904 | The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) | ||
| Theorem | grpbn0 18905 | The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) | ||
| Theorem | grplid 18906 | The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) | ||
| Theorem | grprid 18907 | The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) | ||
| Theorem | grplidd 18908 | The identity element of a group is a left identity. Deduction associated with grplid 18906. (Contributed by SN, 29-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 0 + 𝑋) = 𝑋) | ||
| Theorem | grpridd 18909 | The identity element of a group is a right identity. Deduction associated with grprid 18907. (Contributed by SN, 29-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 0 ) = 𝑋) | ||
| Theorem | grpn0 18910 | A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| ⊢ (𝐺 ∈ Grp → 𝐺 ≠ ∅) | ||
| Theorem | hashfingrpnn 18911 | A finite group has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) | ||
| Theorem | grprcan 18912 | Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌)) | ||
| Theorem | grpinveu 18913* | The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) | ||
| Theorem | grpid 18914 | Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) | ||
| Theorem | isgrpid2 18915 | Properties showing that an element 𝑍 is the identity element of a group. (Contributed by NM, 7-Aug-2013.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍)) | ||
| Theorem | grpidd2 18916* | Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 18897. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ (𝜑 → 0 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) & ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 0 = (0g‘𝐺)) | ||
| Theorem | grpinvfval 18917* | The inverse function of a group. For a shorter proof using ax-rep 5237, see grpinvfvalALT 18918. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) Remove dependency on ax-rep 5237. (Revised by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) | ||
| Theorem | grpinvfvalALT 18918* | Shorter proof of grpinvfval 18917 using ax-rep 5237. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) | ||
| Theorem | grpinvval 18919* | The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) | ||
| Theorem | grpinvfn 18920 | Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ 𝑁 Fn 𝐵 | ||
| Theorem | grpinvfvi 18921 | The group inverse function is compatible with identity-function protection. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ 𝑁 = (invg‘( I ‘𝐺)) | ||
| Theorem | grpsubfval 18922* | Group subtraction (division) operation. For a shorter proof using ax-rep 5237, see grpsubfvalALT 18923. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) Remove dependency on ax-rep 5237. (Revised by Rohan Ridenour, 17-Aug-2023.) (Proof shortened by AV, 19-Feb-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) | ||
| Theorem | grpsubfvalALT 18923* | Shorter proof of grpsubfval 18922 using ax-rep 5237. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) | ||
| Theorem | grpsubval 18924 | Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) | ||
| Theorem | grpinvf 18925 | The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) | ||
| Theorem | grpinvcl 18926 | A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) | ||
| Theorem | grpinvcld 18927 | A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) | ||
| Theorem | grplinv 18928 | The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) | ||
| Theorem | grprinv 18929 | The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) | ||
| Theorem | grpinvid1 18930 | The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) | ||
| Theorem | grpinvid2 18931 | The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) = 𝑌 ↔ (𝑌 + 𝑋) = 0 )) | ||
| Theorem | isgrpinv 18932* | Properties showing that a function 𝑀 is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ((𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀)) | ||
| Theorem | grplinvd 18933 | The left inverse of a group element. Deduction associated with grplinv 18928. (Contributed by SN, 29-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) + 𝑋) = 0 ) | ||
| Theorem | grprinvd 18934 | The right inverse of a group element. Deduction associated with grprinv 18929. (Contributed by SN, 29-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + (𝑁‘𝑋)) = 0 ) | ||
| Theorem | grplrinv 18935* | In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) | ||
| Theorem | grpidinv2 18936* | A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) | ||
| Theorem | grpidinv 18937* | A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ∃𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢))) | ||
| Theorem | grpinvid 18938 | The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) | ||
| Theorem | grplcan 18939 | Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌)) | ||
| Theorem | grpasscan1 18940 | An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑁‘𝑋) + 𝑌)) = 𝑌) | ||
| Theorem | grpasscan2 18941 | An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑁‘𝑌)) + 𝑌) = 𝑋) | ||
| Theorem | grpidrcan 18942 | If right adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑍) = 𝑋 ↔ 𝑍 = 0 )) | ||
| Theorem | grpidlcan 18943 | If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑋) = 𝑋 ↔ 𝑍 = 0 )) | ||
| Theorem | grpinvinv 18944 | Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) | ||
| Theorem | grpinvcnv 18945 | The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) | ||
| Theorem | grpinv11 18946 | The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.) (Proof shortened by SN, 8-Jul-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) | ||
| Theorem | grpinv11OLD 18947 | Obsolete version of grpinv11 18946 as of 8-Jul-2025. (Contributed by NM, 22-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) | ||
| Theorem | grpinvf1o 18948 | The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑁:𝐵–1-1-onto→𝐵) | ||
| Theorem | grpinvnz 18949 | The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑁‘𝑋) ≠ 0 ) | ||
| Theorem | grpinvnzcl 18950 | The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁‘𝑋) ∈ (𝐵 ∖ { 0 })) | ||
| Theorem | grpsubinv 18951 | Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − (𝑁‘𝑌)) = (𝑋 + 𝑌)) | ||
| Theorem | grplmulf1o 18952* | Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑋 + 𝑥)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝐹:𝐵–1-1-onto→𝐵) | ||
| Theorem | grpraddf1o 18953* | Right addition by a group element is a bijection on any group. (Contributed by SN, 28-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 + 𝑋)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝐹:𝐵–1-1-onto→𝐵) | ||
| Theorem | grpinvpropd 18954* | If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (invg‘𝐾) = (invg‘𝐿)) | ||
| Theorem | grpidssd 18955* | If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.) |
| ⊢ (𝜑 → 𝑀 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ Grp) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) | ||
| Theorem | grpinvssd 18956* | If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.) |
| ⊢ (𝜑 → 𝑀 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ Grp) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 → ((invg‘𝑆)‘𝑋) = ((invg‘𝑀)‘𝑋))) | ||
| Theorem | grpinvadd 18957 | The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) | ||
| Theorem | grpsubf 18958 | Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | grpsubcl 18959 | Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | ||
| Theorem | grpsubrcan 18960 | Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑍) = (𝑌 − 𝑍) ↔ 𝑋 = 𝑌)) | ||
| Theorem | grpinvsub 18961 | Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) | ||
| Theorem | grpinvval2 18962 | A df-neg 11415-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ( 0 − 𝑋)) | ||
| Theorem | grpsubid 18963 | Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) | ||
| Theorem | grpsubid1 18964 | Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = 𝑋) | ||
| Theorem | grpsubeq0 18965 | If the difference between two group elements is zero, they are equal. (subeq0 11455 analog.) (Contributed by NM, 31-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) | ||
| Theorem | grpsubadd0sub 18966 | Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ( 0 − 𝑌))) | ||
| Theorem | grpsubadd 18967 | Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋)) | ||
| Theorem | grpsubsub 18968 | Double group subtraction. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 − (𝑌 − 𝑍)) = (𝑋 + (𝑍 − 𝑌))) | ||
| Theorem | grpaddsubass 18969 | Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = (𝑋 + (𝑌 − 𝑍))) | ||
| Theorem | grppncan 18970 | Cancellation law for subtraction (pncan 11434 analog). (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑌) = 𝑋) | ||
| Theorem | grpnpcan 18971 | Cancellation law for subtraction (npcan 11437 analog). (Contributed by NM, 19-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) + 𝑌) = 𝑋) | ||
| Theorem | grpsubsub4 18972 | Double group subtraction (subsub4 11462 analog). (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑍 + 𝑌))) | ||
| Theorem | grppnpcan2 18973 | Cancellation law for mixed addition and subtraction. (pnpcan2 11469 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑍) − (𝑌 + 𝑍)) = (𝑋 − 𝑌)) | ||
| Theorem | grpnpncan 18974 | Cancellation law for group subtraction. (npncan 11450 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) + (𝑌 − 𝑍)) = (𝑋 − 𝑍)) | ||
| Theorem | grpnpncan0 18975 | Cancellation law for group subtraction (npncan2 11456 analog). (Contributed by AV, 24-Nov-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 − 𝑌) + (𝑌 − 𝑋)) = 0 ) | ||
| Theorem | grpnnncan2 18976 | Cancellation law for group subtraction. (nnncan2 11466 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑍) − (𝑌 − 𝑍)) = (𝑋 − 𝑌)) | ||
| Theorem | dfgrp3lem 18977* | Lemma for dfgrp3 18978. (Contributed by AV, 28-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) | ||
| Theorem | dfgrp3 18978* | Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦))) | ||
| Theorem | dfgrp3e 18979* | Alternate definition of a group as a set with a closed, associative operation, for which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ∧ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)))) | ||
| Theorem | grplactfval 18980* | The left group action of element 𝐴 of group 𝐺. (Contributed by Paul Chapman, 18-Mar-2008.) |
| ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) | ||
| Theorem | grplactval 18981* | The value of the left group action of element 𝐴 of group 𝐺 at 𝐵. (Contributed by Paul Chapman, 18-Mar-2008.) |
| ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴)‘𝐵) = (𝐴 + 𝐵)) | ||
| Theorem | grplactcnv 18982* | The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡(𝐹‘𝐴) = (𝐹‘(𝐼‘𝐴)))) | ||
| Theorem | grplactf1o 18983* | The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴):𝑋–1-1-onto→𝑋) | ||
| Theorem | grpsubpropd 18984 | Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.) |
| ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) ⇒ ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) | ||
| Theorem | grpsubpropd2 18985* | Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) ⇒ ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) | ||
| Theorem | grp1 18986 | The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) | ||
| Theorem | grp1inv 18987 | The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) | ||
| Theorem | prdsinvlem 18988* | Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶Grp) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 0 = (0g ∘ 𝑅) & ⊢ 𝑁 = (𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦))) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ (𝑁 + 𝐹) = 0 )) | ||
| Theorem | prdsgrpd 18989 | The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Grp) ⇒ ⊢ (𝜑 → 𝑌 ∈ Grp) | ||
| Theorem | prdsinvgd 18990* | Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Grp) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑁 = (invg‘𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))) | ||
| Theorem | pwsgrp 18991 | A structure power of a group is a group. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Grp) | ||
| Theorem | pwsinvg 18992 | Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (invg‘𝑅) & ⊢ 𝑁 = (invg‘𝑌) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (𝑀 ∘ 𝑋)) | ||
| Theorem | pwssub 18993 | Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (-g‘𝑅) & ⊢ − = (-g‘𝑌) ⇒ ⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹 − 𝐺) = (𝐹 ∘f 𝑀𝐺)) | ||
| Theorem | imasgrp2 18994* | The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) & ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑁 + 𝑥)) = (𝐹‘ 0 )) ⇒ ⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
| Theorem | imasgrp 18995* | The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
| Theorem | imasgrpf1 18996 | The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑈 = (𝐹 “s 𝑅) & ⊢ 𝑉 = (Base‘𝑅) ⇒ ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Grp) → 𝑈 ∈ Grp) | ||
| Theorem | qusgrp2 18997* | Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∼ (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) ∼ 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) ∼ 0 ) ⇒ ⊢ (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] ∼ = (0g‘𝑈))) | ||
| Theorem | xpsgrp 18998 | The binary product of groups is a group. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp) | ||
| Theorem | xpsinv 18999 | Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ 𝑀 = (invg‘𝑅) & ⊢ 𝑁 = (invg‘𝑆) & ⊢ 𝐼 = (invg‘𝑇) ⇒ ⊢ (𝜑 → (𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉) | ||
| Theorem | xpsgrpsub 19000 | Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ · = (-g‘𝑅) & ⊢ × = (-g‘𝑆) & ⊢ − = (-g‘𝑇) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 − 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |