![]() |
Metamath
Proof Explorer Theorem List (p. 190 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frmdup3lem 18901* | Lemma for frmdup3 18902. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑈 = (varFMnd‘𝐼) ⇒ ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹 ∘ 𝑈) = 𝐴)) → 𝐹 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))) | ||
Theorem | frmdup3 18902* | Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑈 = (varFMnd‘𝐼) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) | ||
According to Wikipedia ("Endomorphism", 25-Jan-2024, https://en.wikipedia.org/wiki/Endomorphism) "An endofunction is a function whose domain is equal to its codomain.". An endofunction is sometimes also called "self-mapping" (see https://www.wikidata.org/wiki/Q1691962) or "self-map" (see https://mathworld.wolfram.com/Self-Map.html), in German "Selbstabbildung" (see https://de.wikipedia.org/wiki/Selbstabbildung). | ||
Syntax | cefmnd 18903 | Extend class notation to include the class of monoids of endofunctions. |
class EndoFMnd | ||
Definition | df-efmnd 18904* | Define the monoid of endofunctions on set 𝑥. We represent the monoid as the set of functions from 𝑥 to itself ((𝑥 ↑m 𝑥)) under function composition, and topologize it as a function space assuming the set is discrete. Analogous to the former definition of SymGrp, see df-symg 19411 and symgvalstruct 19438. (Contributed by AV, 25-Jan-2024.) |
⊢ EndoFMnd = (𝑥 ∈ V ↦ ⦋(𝑥 ↑m 𝑥) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝑥 × {𝒫 𝑥}))〉}) | ||
Theorem | efmnd 18905* | The monoid of endofunctions on set 𝐴. (Contributed by AV, 25-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (𝐴 ↑m 𝐴) & ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) & ⊢ 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) | ||
Theorem | efmndbas 18906 | The base set of the monoid of endofunctions on class 𝐴. (Contributed by AV, 25-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = (𝐴 ↑m 𝐴) | ||
Theorem | efmndbasabf 18907* | The base set of the monoid of endofunctions on class 𝐴 is the set of functions from 𝐴 into itself. (Contributed by AV, 29-Mar-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = {𝑓 ∣ 𝑓:𝐴⟶𝐴} | ||
Theorem | elefmndbas 18908 | Two ways of saying a function is a mapping of 𝐴 to itself. (Contributed by AV, 27-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐴)) | ||
Theorem | elefmndbas2 18909 | Two ways of saying a function is a mapping of 𝐴 to itself. (Contributed by AV, 27-Jan-2024.) (Proof shortened by AV, 29-Mar-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐴)) | ||
Theorem | efmndbasf 18910 | Elements in the monoid of endofunctions on 𝐴 are functions from 𝐴 into itself. (Contributed by AV, 27-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴⟶𝐴) | ||
Theorem | efmndhash 18911 | The monoid of endofunctions on 𝑛 objects has cardinality 𝑛↑𝑛. (Contributed by AV, 27-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → (♯‘𝐵) = ((♯‘𝐴)↑(♯‘𝐴))) | ||
Theorem | efmndbasfi 18912 | The monoid of endofunctions on a finite set 𝐴 is finite. (Contributed by AV, 27-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → 𝐵 ∈ Fin) | ||
Theorem | efmndfv 18913 | The function value of an endofunction. (Contributed by AV, 27-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ 𝐴) | ||
Theorem | efmndtset 18914 | The topology of the monoid of endofunctions on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just endofunctions - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by AV, 25-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) | ||
Theorem | efmndplusg 18915* | The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | ||
Theorem | efmndov 18916 | The value of the group operation of the monoid of endofunctions on 𝐴. (Contributed by AV, 27-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) | ||
Theorem | efmndcl 18917 | The group operation of the monoid of endofunctions on 𝐴 is closed. (Contributed by AV, 27-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
Theorem | efmndtopn 18918 | The topology of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝑋) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → ((∏t‘(𝑋 × {𝒫 𝑋})) ↾t 𝐵) = (TopOpen‘𝐺)) | ||
Theorem | symggrplem 18919* | Lemma for symggrp 19442 and efmndsgrp 18921. Conditions for an operation to be associative. Formerly part of proof for symggrp 19442. (Contributed by AV, 28-Jan-2024.) |
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
Theorem | efmndmgm 18920 | The monoid of endofunctions on a class 𝐴 is a magma. (Contributed by AV, 28-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ 𝐺 ∈ Mgm | ||
Theorem | efmndsgrp 18921 | The monoid of endofunctions on a class 𝐴 is a semigroup. (Contributed by AV, 28-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ 𝐺 ∈ Smgrp | ||
Theorem | ielefmnd 18922 | The identity function restricted to a set 𝐴 is an element of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 27-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) | ||
Theorem | efmndid 18923 | The identity function restricted to a set 𝐴 is the identity element of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) | ||
Theorem | efmndmnd 18924 | The monoid of endofunctions on a set 𝐴 is actually a monoid. (Contributed by AV, 31-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) | ||
Theorem | efmnd0nmnd 18925 | Even the monoid of endofunctions on the empty set is actually a monoid. (Contributed by AV, 31-Jan-2024.) |
⊢ (EndoFMnd‘∅) ∈ Mnd | ||
Theorem | efmndbas0 18926 | The base set of the monoid of endofunctions on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Jan-2024.) (Proof shortened by AV, 31-Mar-2024.) |
⊢ (Base‘(EndoFMnd‘∅)) = {∅} | ||
Theorem | efmnd1hash 18927 | The monoid of endofunctions on a singleton has cardinality 1. (Contributed by AV, 27-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → (♯‘𝐵) = 1) | ||
Theorem | efmnd1bas 18928 | The monoid of endofunctions on a singleton consists of the identity only. (Contributed by AV, 31-Jan-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {{〈𝐼, 𝐼〉}}) | ||
Theorem | efmnd2hash 18929 | The monoid of endofunctions on a (proper) pair has cardinality 4. (Contributed by AV, 18-Feb-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼, 𝐽} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐵) = 4) | ||
Theorem | submefmnd 18930* | If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 19451. (Contributed by AV, 17-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐹 = (Base‘𝑆) ⇒ ⊢ (𝐴 ∈ 𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubMnd‘𝑀))) | ||
Theorem | sursubmefmnd 18931* | The set of surjective endofunctions on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → {ℎ ∣ ℎ:𝐴–onto→𝐴} ∈ (SubMnd‘𝑀)) | ||
Theorem | injsubmefmnd 18932* | The set of injective endofunctions on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → {ℎ ∣ ℎ:𝐴–1-1→𝐴} ∈ (SubMnd‘𝑀)) | ||
Theorem | idressubmefmnd 18933 | The singleton containing only the identity function restricted to a set is a submonoid of the monoid of endofunctions on this set. (Contributed by AV, 17-Feb-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺)) | ||
Theorem | idresefmnd 18934 | The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.) |
⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) | ||
Theorem | smndex1ibas 18935 | The modulo function 𝐼 is an endofunction on ℕ0. (Contributed by AV, 12-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ⇒ ⊢ 𝐼 ∈ (Base‘𝑀) | ||
Theorem | smndex1iidm 18936* | The modulo function 𝐼 is idempotent. (Contributed by AV, 12-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ⇒ ⊢ (𝐼 ∘ 𝐼) = 𝐼 | ||
Theorem | smndex1gbas 18937* | The constant functions (𝐺‘𝐾) are endofunctions on ℕ0. (Contributed by AV, 12-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) ⇒ ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) ∈ (Base‘𝑀)) | ||
Theorem | smndex1gid 18938* | The composition of a constant function (𝐺‘𝐾) with another endofunction on ℕ0 results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) ⇒ ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) | ||
Theorem | smndex1igid 18939* | The composition of the modulo function 𝐼 and a constant function (𝐺‘𝐾) results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) ⇒ ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐺‘𝐾)) | ||
Theorem | smndex1basss 18940* | The modulo function 𝐼 and the constant functions (𝐺‘𝐾) are endofunctions on ℕ0. (Contributed by AV, 12-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ⇒ ⊢ 𝐵 ⊆ (Base‘𝑀) | ||
Theorem | smndex1bas 18941* | The base set of the monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾). (Contributed by AV, 12-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ (Base‘𝑆) = 𝐵 | ||
Theorem | smndex1mgm 18942* | The monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾) is a magma. (Contributed by AV, 14-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ 𝑆 ∈ Mgm | ||
Theorem | smndex1sgrp 18943* | The monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾) is a semigroup. (Contributed by AV, 14-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ 𝑆 ∈ Smgrp | ||
Theorem | smndex1mndlem 18944* | Lemma for smndex1mnd 18945 and smndex1id 18946. (Contributed by AV, 16-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ (𝑋 ∈ 𝐵 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) | ||
Theorem | smndex1mnd 18945* | The monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾) is a monoid. (Contributed by AV, 16-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ 𝑆 ∈ Mnd | ||
Theorem | smndex1id 18946* | The modulo function 𝐼 is the identity of the monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾). (Contributed by AV, 16-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ 𝐼 = (0g‘𝑆) | ||
Theorem | smndex1n0mnd 18947* | The identity of the monoid 𝑀 of endofunctions on set ℕ0 is not contained in the base set of the constructed monoid 𝑆. (Contributed by AV, 17-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ (0g‘𝑀) ∉ 𝐵 | ||
Theorem | nsmndex1 18948* | The base set 𝐵 of the constructed monoid 𝑆 is not a submonoid of the monoid 𝑀 of endofunctions on set ℕ0, although 𝑀 ∈ Mnd and 𝑆 ∈ Mnd and 𝐵 ⊆ (Base‘𝑀) hold. (Contributed by AV, 17-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ 𝐵 ∉ (SubMnd‘𝑀) | ||
Theorem | smndex2dbas 18949 | The doubling function 𝐷 is an endofunction on ℕ0. (Contributed by AV, 18-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) ⇒ ⊢ 𝐷 ∈ 𝐵 | ||
Theorem | smndex2dnrinv 18950 | The doubling function 𝐷 has no right inverse in the monoid of endofunctions on ℕ0. (Contributed by AV, 18-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) ⇒ ⊢ ∀𝑓 ∈ 𝐵 (𝐷 ∘ 𝑓) ≠ 0 | ||
Theorem | smndex2hbas 18951 | The halving functions 𝐻 are endofunctions on ℕ0. (Contributed by AV, 18-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)) ⇒ ⊢ 𝐻 ∈ 𝐵 | ||
Theorem | smndex2dlinvh 18952* | The halving functions 𝐻 are left inverses of the doubling function 𝐷. (Contributed by AV, 18-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)) ⇒ ⊢ (𝐻 ∘ 𝐷) = 0 | ||
Theorem | mgm2nsgrplem1 18953* | Lemma 1 for mgm2nsgrp 18957: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18693). (Contributed by AV, 27-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) | ||
Theorem | mgm2nsgrplem2 18954* | Lemma 2 for mgm2nsgrp 18957. (Contributed by AV, 27-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ⚬ 𝐴) ⚬ 𝐵) = 𝐴) | ||
Theorem | mgm2nsgrplem3 18955* | Lemma 3 for mgm2nsgrp 18957. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⚬ (𝐴 ⚬ 𝐵)) = 𝐵) | ||
Theorem | mgm2nsgrplem4 18956* | Lemma 4 for mgm2nsgrp 18957: M is not a semigroup. (Contributed by AV, 28-Jan-2020.) (Proof shortened by AV, 31-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) ⇒ ⊢ ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp) | ||
Theorem | mgm2nsgrp 18957* | A small magma (with two elements) which is not a semigroup. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) ⇒ ⊢ ((♯‘𝑆) = 2 → (𝑀 ∈ Mgm ∧ 𝑀 ∉ Smgrp)) | ||
Theorem | sgrp2nmndlem1 18958* | Lemma 1 for sgrp2nmnd 18965: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18693). (Contributed by AV, 29-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) | ||
Theorem | sgrp2nmndlem2 18959* | Lemma 2 for sgrp2nmnd 18965. (Contributed by AV, 29-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ⚬ 𝐶) = 𝐴) | ||
Theorem | sgrp2nmndlem3 18960* | Lemma 3 for sgrp2nmnd 18965. (Contributed by AV, 29-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) | ||
Theorem | sgrp2rid2 18961* | A small semigroup (with two elements) with two right identities which are different if 𝐴 ≠ 𝐵. (Contributed by AV, 10-Feb-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦) | ||
Theorem | sgrp2rid2ex 18962* | A small semigroup (with two elements) with two right identities which are different. (Contributed by AV, 10-Feb-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((♯‘𝑆) = 2 → ∃𝑥 ∈ 𝑆 ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ≠ 𝑧 ∧ (𝑦 ⚬ 𝑥) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦)) | ||
Theorem | sgrp2nmndlem4 18963* | Lemma 4 for sgrp2nmnd 18965: M is a semigroup. (Contributed by AV, 29-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) ⇒ ⊢ ((♯‘𝑆) = 2 → 𝑀 ∈ Smgrp) | ||
Theorem | sgrp2nmndlem5 18964* | Lemma 5 for sgrp2nmnd 18965: M is not a monoid. (Contributed by AV, 29-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) ⇒ ⊢ ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd) | ||
Theorem | sgrp2nmnd 18965* | A small semigroup (with two elements) which is not a monoid. (Contributed by AV, 26-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) ⇒ ⊢ ((♯‘𝑆) = 2 → (𝑀 ∈ Smgrp ∧ 𝑀 ∉ Mnd)) | ||
Theorem | mgmnsgrpex 18966 | There is a magma which is not a semigroup. (Contributed by AV, 29-Jan-2020.) |
⊢ ∃𝑚 ∈ Mgm 𝑚 ∉ Smgrp | ||
Theorem | sgrpnmndex 18967 | There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020.) |
⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd | ||
Theorem | sgrpssmgm 18968 | The class of all semigroups is a proper subclass of the class of all magmas. (Contributed by AV, 29-Jan-2020.) |
⊢ Smgrp ⊊ Mgm | ||
Theorem | mndsssgrp 18969 | The class of all monoids is a proper subclass of the class of all semigroups. (Contributed by AV, 29-Jan-2020.) |
⊢ Mnd ⊊ Smgrp | ||
Theorem | pwmndgplus 18970* | The operation of the monoid of the power set of a class 𝐴 under union. (Contributed by AV, 27-Feb-2024.) |
⊢ (Base‘𝑀) = 𝒫 𝐴 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) ⇒ ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (𝑋(+g‘𝑀)𝑌) = (𝑋 ∪ 𝑌)) | ||
Theorem | pwmndid 18971* | The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.) |
⊢ (Base‘𝑀) = 𝒫 𝐴 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) ⇒ ⊢ (0g‘𝑀) = ∅ | ||
Theorem | pwmnd 18972* | The power set of a class 𝐴 is a monoid under union. (Contributed by AV, 27-Feb-2024.) |
⊢ (Base‘𝑀) = 𝒫 𝐴 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) ⇒ ⊢ 𝑀 ∈ Mnd | ||
Syntax | cgrp 18973 | Extend class notation with class of all groups. |
class Grp | ||
Syntax | cminusg 18974 | Extend class notation with inverse of group element. |
class invg | ||
Syntax | csg 18975 | Extend class notation with group subtraction (or division) operation. |
class -g | ||
Definition | df-grp 18976* | Define class of all groups. A group is a monoid (df-mnd 18773) whose internal operation is such that every element admits a left inverse (which can be proven to be a two-sided inverse). Thus, a group 𝐺 is an algebraic structure formed from a base set of elements (notated (Base‘𝐺) per df-base 17259) and an internal group operation (notated (+g‘𝐺) per df-plusg 17324). The operation combines any two elements of the group base set and must satisfy the 4 group axioms: closure (the result of the group operation must always be a member of the base set, see grpcl 18981), associativity (so ((𝑎+g𝑏)+g𝑐) = (𝑎+g(𝑏+g𝑐)) for any a, b, c, see grpass 18982), identity (there must be an element 𝑒 = (0g‘𝐺) such that 𝑒+g𝑎 = 𝑎+g𝑒 = 𝑎 for any a), and inverse (for each element a in the base set, there must be an element 𝑏 = invg𝑎 in the base set such that 𝑎+g𝑏 = 𝑏+g𝑎 = 𝑒). It can be proven that the identity element is unique (grpideu 18984). Groups need not be commutative; a commutative group is an Abelian group (see df-abl 19825). Subgroups can often be formed from groups, see df-subg 19163. An example of an (Abelian) group is the set of complex numbers ℂ over the group operation + (addition), as proven in cnaddablx 19910; an Abelian group is a group as proven in ablgrp 19827. Other structures include groups, including unital rings (df-ring 20262) and fields (df-field 20754). (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} | ||
Definition | df-minusg 18977* | Define inverse of group element. (Contributed by NM, 24-Aug-2011.) |
⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑤 ∈ (Base‘𝑔)(𝑤(+g‘𝑔)𝑥) = (0g‘𝑔)))) | ||
Definition | df-sbg 18978* | Define group subtraction (also called division for multiplicative groups). (Contributed by NM, 31-Mar-2014.) |
⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) | ||
Theorem | isgrp 18979* | The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) | ||
Theorem | grpmnd 18980 | A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | ||
Theorem | grpcl 18981 | Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
Theorem | grpass 18982 | A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
Theorem | grpinvex 18983* | Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) | ||
Theorem | grpideu 18984* | The two-sided identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 8-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)) | ||
Theorem | grpassd 18985 | A group operation is associative. (Contributed by SN, 29-Jan-2025.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
Theorem | grpmndd 18986 | A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mnd) | ||
Theorem | grpcld 18987 | Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | ||
Theorem | grpplusf 18988 | The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)⟶𝐵) | ||
Theorem | grpplusfo 18989 | The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto→𝐵) | ||
Theorem | resgrpplusfrn 18990 | The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by AV, 30-Aug-2021.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝐹 = (+𝑓‘𝐻) ⇒ ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = ran 𝐹) | ||
Theorem | grppropd 18991* | If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) | ||
Theorem | grpprop 18992 | If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.) |
⊢ (Base‘𝐾) = (Base‘𝐿) & ⊢ (+g‘𝐾) = (+g‘𝐿) ⇒ ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) | ||
Theorem | grppropstr 18993 | Generalize a specific 2-element group 𝐿 to show that any set 𝐾 with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ (Base‘𝐾) = 𝐵 & ⊢ (+g‘𝐾) = + & ⊢ 𝐿 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) | ||
Theorem | grpss 18994 | Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 20265, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} & ⊢ 𝑅 ∈ V & ⊢ 𝐺 ⊆ 𝑅 & ⊢ Fun 𝑅 ⇒ ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) | ||
Theorem | isgrpd2e 18995* | Deduce a group from its properties. In this version of isgrpd2 18996, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 10-Aug-2013.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ (𝜑 → 0 = (0g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
Theorem | isgrpd2 18996* | Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2740, but we make an exception for theorems such as isgrpd2 18996, ismndd 18794, and islmodd 20886 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ (𝜑 → 0 = (0g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
Theorem | isgrpde 18997* | Deduce a group from its properties. In this version of isgrpd 18998, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 6-Jan-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 0 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
Theorem | isgrpd 18998* | Deduce a group from its properties. Unlike isgrpd2 18996, this one goes straight from the base properties rather than going through Mnd. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 0 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
Theorem | isgrpi 18999* | Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ 0 ∈ 𝐵 & ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) & ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) ⇒ ⊢ 𝐺 ∈ Grp | ||
Theorem | grpsgrp 19000 | A group is a semigroup. (Contributed by AV, 28-Aug-2021.) |
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |