HomeHome Metamath Proof Explorer
Theorem List (p. 190 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 18901-19000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgicer 18901 Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.)
𝑔 Er Grp
 
Theoremgicen 18902 Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝑅𝑔 𝑆𝐵𝐶)
 
Theoremgicsubgen 18903 A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015.)
(𝑅𝑔 𝑆 → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
 
10.2.7  Group actions
 
Syntaxcga 18904 Extend class definition to include the class of group actions.
class GrpAct
 
Definitiondf-ga 18905* Define the class of all group actions. A group 𝐺 acts on a set 𝑆 if a permutation on 𝑆 is associated with every element of 𝐺 in such a way that the identity permutation on 𝑆 is associated with the neutral element of 𝐺, and the composition of the permutations associated with two elements of 𝐺 is identical with the permutation associated with the composition of these two elements (in the same order) in the group 𝐺. (Contributed by Jeff Hankins, 10-Aug-2009.)
GrpAct = (𝑔 ∈ Grp, 𝑠 ∈ V ↦ (Base‘𝑔) / 𝑏{𝑚 ∈ (𝑠m (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
 
Theoremisga 18906* The predicate "is a (left) group action". The group 𝐺 is said to act on the base set 𝑌 of the action, which is not assumed to have any special properties. There is a related notion of right group action, but as the Wikipedia article explains, it is not mathematically interesting. The way actions are usually thought of is that each element 𝑔 of 𝐺 is a permutation of the elements of 𝑌 (see gapm 18921). Since group theory was classically about symmetry groups, it is therefore likely that the notion of group action was useful even in early group theory. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
 
Theoremgagrp 18907 The left argument of a group action is a group. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 30-Apr-2015.)
( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
 
Theoremgaset 18908 The right argument of a group action is a set. (Contributed by Mario Carneiro, 30-Apr-2015.)
( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
 
Theoremgagrpid 18909 The identity of the group does not alter the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
0 = (0g𝐺)       (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( 0 𝐴) = 𝐴)
 
Theoremgaf 18910 The mapping of the group action operation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)       ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
 
Theoremgafo 18911 A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)       ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)–onto𝑌)
 
Theoremgaass 18912 An "associative" property for group actions. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑋𝐶𝑌)) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶)))
 
Theoremga0 18913 The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
(𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅))
 
Theoremgaid 18914 The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)       ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆))
 
Theoremsubgga 18915* A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐻 = (𝐺s 𝑌)    &   𝐹 = (𝑥𝑌, 𝑦𝑋 ↦ (𝑥 + 𝑦))       (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋))
 
Theoremgass 18916* A subset of a group action is a group action iff it is closed under the group action operation. (Contributed by Mario Carneiro, 17-Jan-2015.)
𝑋 = (Base‘𝐺)       (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍))
 
Theoremgasubg 18917 The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015.)
𝐻 = (𝐺s 𝑆)       (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌))
 
Theoremgaid2 18918* A group operation is a left group action of the group on itself. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐹 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦))       (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpAct 𝑋))
 
Theoremgalcan 18919 The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)       (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))
 
Theoremgacan 18920 Group inverses cancel in a group action. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶 ↔ ((𝑁𝐴) 𝐶) = 𝐵))
 
Theoremgapm 18921* The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)    &   𝐹 = (𝑥𝑌 ↦ (𝐴 𝑥))       (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) → 𝐹:𝑌1-1-onto𝑌)
 
Theoremgaorb 18922* The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}       (𝐴 𝐵 ↔ (𝐴𝑌𝐵𝑌 ∧ ∃𝑋 ( 𝐴) = 𝐵))
 
Theoremgaorber 18923* The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}    &   𝑋 = (Base‘𝐺)       ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
 
Theoremgastacl 18924* The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015.)
𝑋 = (Base‘𝐺)    &   𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}       (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
 
Theoremgastacos 18925* Write the coset relation for the stabilizer subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
𝑋 = (Base‘𝐺)    &   𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}    &    = (𝐺 ~QG 𝐻)       ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ (𝐵 𝐴) = (𝐶 𝐴)))
 
Theoremorbstafun 18926* Existence and uniqueness for the function of orbsta 18928. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
𝑋 = (Base‘𝐺)    &   𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}    &    = (𝐺 ~QG 𝐻)    &   𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)       (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
 
Theoremorbstaval 18927* Value of the function at a given equivalence class element. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
𝑋 = (Base‘𝐺)    &   𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}    &    = (𝐺 ~QG 𝐻)    &   𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)       ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝐵𝑋) → (𝐹‘[𝐵] ) = (𝐵 𝐴))
 
Theoremorbsta 18928* The Orbit-Stabilizer theorem. The mapping 𝐹 is a bijection from the cosets of the stabilizer subgroup of 𝐴 to the orbit of 𝐴. (Contributed by Mario Carneiro, 15-Jan-2015.)
𝑋 = (Base‘𝐺)    &   𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}    &    = (𝐺 ~QG 𝐻)    &   𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)    &   𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}       (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂)
 
Theoremorbsta2 18929* Relation between the size of the orbit and the size of the stabilizer of a point in a finite group action. (Contributed by Mario Carneiro, 16-Jan-2015.)
𝑋 = (Base‘𝐺)    &   𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}    &    = (𝐺 ~QG 𝐻)    &   𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}       ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
 
10.2.8  Centralizers and centers
 
Syntaxccntz 18930 Syntax for the centralizer of a set in a monoid.
class Cntz
 
Syntaxccntr 18931 Syntax for the centralizer of a monoid.
class Cntr
 
Definitiondf-cntz 18932* Define the centralizer of a subset of a magma, which is the set of elements each of which commutes with each element of the given subset. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)}))
 
Definitiondf-cntr 18933 Define the center of a magma, which is the elements that commute with all others. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚)))
 
Theoremcntrval 18934 Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝐵 = (Base‘𝑀)    &   𝑍 = (Cntz‘𝑀)       (𝑍𝐵) = (Cntr‘𝑀)
 
Theoremcntzfval 18935* First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)    &   𝑍 = (Cntz‘𝑀)       (𝑀𝑉𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
 
Theoremcntzval 18936* Definition substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)    &   𝑍 = (Cntz‘𝑀)       (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
 
Theoremelcntz 18937* Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)    &   𝑍 = (Cntz‘𝑀)       (𝑆𝐵 → (𝐴 ∈ (𝑍𝑆) ↔ (𝐴𝐵 ∧ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))))
 
Theoremcntzel 18938* Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)    &   𝑍 = (Cntz‘𝑀)       ((𝑆𝐵𝑋𝐵) → (𝑋 ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))
 
Theoremcntzsnval 18939* Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)    &   𝑍 = (Cntz‘𝑀)       (𝑌𝐵 → (𝑍‘{𝑌}) = {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)})
 
Theoremelcntzsn 18940 Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)    &   𝑍 = (Cntz‘𝑀)       (𝑌𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ (𝑋𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋))))
 
Theoremsscntz 18941* A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)    &   𝑍 = (Cntz‘𝑀)       ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
 
Theoremcntzrcl 18942 Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝐵 = (Base‘𝑀)    &   𝑍 = (Cntz‘𝑀)       (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))
 
Theoremcntzssv 18943 The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝐵 = (Base‘𝑀)    &   𝑍 = (Cntz‘𝑀)       (𝑍𝑆) ⊆ 𝐵
 
Theoremcntzi 18944 Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
+ = (+g𝑀)    &   𝑍 = (Cntz‘𝑀)       ((𝑋 ∈ (𝑍𝑆) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremcntrss 18945 The center is a subset of the base field. (Contributed by Thierry Arnoux, 21-Aug-2023.)
𝐵 = (Base‘𝑀)       (Cntr‘𝑀) ⊆ 𝐵
 
Theoremcntri 18946 Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)    &   𝑍 = (Cntr‘𝑀)       ((𝑋𝑍𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremresscntz 18947 Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015.)
𝐻 = (𝐺s 𝐴)    &   𝑍 = (Cntz‘𝐺)    &   𝑌 = (Cntz‘𝐻)       ((𝐴𝑉𝑆𝐴) → (𝑌𝑆) = ((𝑍𝑆) ∩ 𝐴))
 
Theoremcntz2ss 18948 Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.)
𝐵 = (Base‘𝑀)    &   𝑍 = (Cntz‘𝑀)       ((𝑆𝐵𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))
 
Theoremcntzrec 18949 Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝐵 = (Base‘𝑀)    &   𝑍 = (Cntz‘𝑀)       ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ 𝑇 ⊆ (𝑍𝑆)))
 
Theoremcntziinsn 18950* Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝐵 = (Base‘𝑀)    &   𝑍 = (Cntz‘𝑀)       (𝑆𝐵 → (𝑍𝑆) = (𝐵 𝑥𝑆 (𝑍‘{𝑥})))
 
Theoremcntzsubm 18951 Centralizers in a monoid are submonoids. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
𝐵 = (Base‘𝑀)    &   𝑍 = (Cntz‘𝑀)       ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
 
Theoremcntzsubg 18952 Centralizers in a group are subgroups. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝐵 = (Base‘𝑀)    &   𝑍 = (Cntz‘𝑀)       ((𝑀 ∈ Grp ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑀))
 
Theoremcntzidss 18953 If the elements of 𝑆 commute, the elements of a subset 𝑇 also commute. (Contributed by Mario Carneiro, 25-Apr-2016.)
𝑍 = (Cntz‘𝐺)       ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑇 ⊆ (𝑍𝑇))
 
Theoremcntzmhm 18954 Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.)
𝑍 = (Cntz‘𝐺)    &   𝑌 = (Cntz‘𝐻)       ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)))
 
Theoremcntzmhm2 18955 Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.)
𝑍 = (Cntz‘𝐺)    &   𝑌 = (Cntz‘𝐻)       ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍𝑇)) → (𝐹𝑆) ⊆ (𝑌‘(𝐹𝑇)))
 
Theoremcntrsubgnsg 18956 A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝑍 = (Cntr‘𝑀)       ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀))
 
Theoremcntrnsg 18957 The center of a group is a normal subgroup. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝑍 = (Cntr‘𝑀)       (𝑀 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝑀))
 
10.2.9  The opposite group
 
Syntaxcoppg 18958 The opposite group operation.
class oppg
 
Definitiondf-oppg 18959 Define an opposite group, which is the same as the original group but with addition written the other way around. df-oppr 19871 does the same thing for multiplication. (Contributed by Stefan O'Rear, 25-Aug-2015.)
oppg = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), tpos (+g𝑤)⟩))
 
Theoremoppgval 18960 Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
+ = (+g𝑅)    &   𝑂 = (oppg𝑅)       𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)
 
Theoremoppgplusfval 18961 Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
+ = (+g𝑅)    &   𝑂 = (oppg𝑅)    &    = (+g𝑂)        = tpos +
 
Theoremoppgplus 18962 Value of the addition operation of an opposite ring. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
+ = (+g𝑅)    &   𝑂 = (oppg𝑅)    &    = (+g𝑂)       (𝑋 𝑌) = (𝑌 + 𝑋)
 
Theoremsetsplusg 18963 The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.)
𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ (+g‘ndx)       (𝐸𝑅) = (𝐸𝑂)
 
TheoremoppglemOLD 18964 Obsolete version of setsplusg 18963 as of 18-Oct-2024. Lemma for oppgbas 18965. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑂 = (oppg𝑅)    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   𝑁 ≠ 2       (𝐸𝑅) = (𝐸𝑂)
 
Theoremoppgbas 18965 Base set of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.)
𝑂 = (oppg𝑅)    &   𝐵 = (Base‘𝑅)       𝐵 = (Base‘𝑂)
 
TheoremoppgbasOLD 18966 Obsolete version of oppgbas 18965 as of 18-Oct-2024. Base set of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑂 = (oppg𝑅)    &   𝐵 = (Base‘𝑅)       𝐵 = (Base‘𝑂)
 
Theoremoppgtset 18967 Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015.)
𝑂 = (oppg𝑅)    &   𝐽 = (TopSet‘𝑅)       𝐽 = (TopSet‘𝑂)
 
TheoremoppgtsetOLD 18968 Obsolete version of oppgtset 18967 as of 18-Oct-2024. Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑂 = (oppg𝑅)    &   𝐽 = (TopSet‘𝑅)       𝐽 = (TopSet‘𝑂)
 
Theoremoppgtopn 18969 Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015.)
𝑂 = (oppg𝑅)    &   𝐽 = (TopOpen‘𝑅)       𝐽 = (TopOpen‘𝑂)
 
Theoremoppgmnd 18970 The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.)
𝑂 = (oppg𝑅)       (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)
 
Theoremoppgmndb 18971 Bidirectional form of oppgmnd 18970. (Contributed by Stefan O'Rear, 26-Aug-2015.)
𝑂 = (oppg𝑅)       (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd)
 
Theoremoppgid 18972 Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.)
𝑂 = (oppg𝑅)    &    0 = (0g𝑅)        0 = (0g𝑂)
 
Theoremoppggrp 18973 The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015.)
𝑂 = (oppg𝑅)       (𝑅 ∈ Grp → 𝑂 ∈ Grp)
 
Theoremoppggrpb 18974 Bidirectional form of oppggrp 18973. (Contributed by Stefan O'Rear, 26-Aug-2015.)
𝑂 = (oppg𝑅)       (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)
 
Theoremoppginv 18975 Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.)
𝑂 = (oppg𝑅)    &   𝐼 = (invg𝑅)       (𝑅 ∈ Grp → 𝐼 = (invg𝑂))
 
Theoreminvoppggim 18976 The inverse is an antiautomorphism on any group. (Contributed by Stefan O'Rear, 26-Aug-2015.)
𝑂 = (oppg𝐺)    &   𝐼 = (invg𝐺)       (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso 𝑂))
 
Theoremoppggic 18977 Every group is (naturally) isomorphic to its opposite. (Contributed by Stefan O'Rear, 26-Aug-2015.)
𝑂 = (oppg𝐺)       (𝐺 ∈ Grp → 𝐺𝑔 𝑂)
 
Theoremoppgsubm 18978 Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.)
𝑂 = (oppg𝐺)       (SubMnd‘𝐺) = (SubMnd‘𝑂)
 
Theoremoppgsubg 18979 Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.)
𝑂 = (oppg𝐺)       (SubGrp‘𝐺) = (SubGrp‘𝑂)
 
Theoremoppgcntz 18980 A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝑂 = (oppg𝐺)    &   𝑍 = (Cntz‘𝐺)       (𝑍𝐴) = ((Cntz‘𝑂)‘𝐴)
 
Theoremoppgcntr 18981 The center of a group is the same as the center of the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝑂 = (oppg𝐺)    &   𝑍 = (Cntr‘𝐺)       𝑍 = (Cntr‘𝑂)
 
Theoremgsumwrev 18982 A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.)
𝐵 = (Base‘𝑀)    &   𝑂 = (oppg𝑀)       ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))
 
10.2.10  Symmetric groups
 
10.2.10.1  Definition and basic properties

According to Wikipedia ("Symmetric group", 09-Mar-2019, https://en.wikipedia.org/wiki/symmetric_group) "In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions." and according to Encyclopedia of Mathematics ("Symmetric group", 09-Mar-2019, https://www.encyclopediaofmath.org/index.php/Symmetric_group) "The group of all permutations (self-bijections) of a set with the operation of composition (see Permutation group).". In [Rotman] p. 27 "If X is a nonempty set, a permutation of X is a function a : X -> X that is a one-to-one correspondence." and "If X is a nonempty set, the symmetric group on X, denoted SX, is the group whose elements are the permutations of X and whose binary operation is composition of functions.". Therefore, we define the symmetric group on a set 𝐴 as the set of one-to-one onto functions from 𝐴 to itself under function composition, see df-symg 18984. However, the set is allowed to be empty, see symgbas0 19005. Hint: The symmetric groups should not be confused with "symmetry groups" which is a different topic in group theory.

In this context, the one-to-one onto functions are called permutations for short. Since the base set of symmetric groups on a set 𝐴 is the set of all permutations of 𝐴 (see symgbas 18987), we can formally say 𝑃 ∈ (SymGrp‘𝐴) expressing "𝑃 is a permutation of 𝐴" if we are not interested in the group (or topology) structure.

In general, a permutation group "... is a group G whose elements are permutations of a given set M and whose group operation is the composition of permutations in G (which are thought of as bijective functions from the set M to itself)." (see Wikipedia "Permutation group", 17-Mar-2019, https://en.wikipedia.org/wiki/Permutation_group 18987). This means that a symmetric group is a permutation group, and each permutation group is a subgroup of a symmetric group (see pgrpsubgsymgbi 19025 and pgrpsubgsymg 19026). For example, the structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation is a permutation group (group consisting of permutations), see idrespermg 19028, which is a (proper) subgroup of a symmetric group, see idressubgsymg 19027.

As in [Rotman] p. 28 "Let 𝑥𝑋 and 𝑝 ∈ SymGrp(𝑋); we say 𝑝 fixes 𝑥 if (𝑝𝑥) = 𝑥; otherwise 𝑝 moves 𝑥.". The theorems starting with symgfix2 19033 are about fixed/moved elements.

 
Syntaxcsymg 18983 Extend class notation to include the class of symmetric groups.
class SymGrp
 
Definitiondf-symg 18984* Define the symmetric group on set 𝑥. We represent the group as the set of one-to-one onto functions from 𝑥 to itself under function composition, and topologize it as a function space assuming the set is discrete. This definition is based on the fact that a symmetric group is a restriction of the monoid of endofunctions. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 28-Mar-2024.)
SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}))
 
Theoremsymgval 18985* The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}       𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
 
TheorempermsetexOLD 18986* Obsolete version of f1osetex 8656 as of 8-Aug-2024. (Contributed by AV, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} ∈ V)
 
Theoremsymgbas 18987* The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015.) (Proof shortened by AV, 29-Mar-2024.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)       𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
 
TheoremsymgbasexOLD 18988 Obsolete as of 8-Aug-2024. 𝐵 ∈ V follows immediatly from fvex 6796. (Contributed by AV, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐴𝑉𝐵 ∈ V)
 
Theoremelsymgbas2 18989 Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Mario Carneiro, 28-Jan-2015.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐹𝑉 → (𝐹𝐵𝐹:𝐴1-1-onto𝐴))
 
Theoremelsymgbas 18990 Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐴𝑉 → (𝐹𝐵𝐹:𝐴1-1-onto𝐴))
 
Theoremsymgbasf1o 18991 Elements in the symmetric group are 1-1 onto functions. (Contributed by SO, 9-Jul-2018.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐹𝐵𝐹:𝐴1-1-onto𝐴)
 
Theoremsymgbasf 18992 A permutation (element of the symmetric group) is a function from a set into itself. (Contributed by AV, 1-Jan-2019.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐹𝐵𝐹:𝐴𝐴)
 
Theoremsymgbasmap 18993 A permutation (element of the symmetric group) is a mapping (or set exponentiation) from a set into itself. (Contributed by AV, 30-Mar-2024.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐹𝐵𝐹 ∈ (𝐴m 𝐴))
 
Theoremsymghash 18994 The symmetric group on 𝑛 objects has cardinality 𝑛!. (Contributed by Mario Carneiro, 22-Jan-2015.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐴 ∈ Fin → (♯‘𝐵) = (!‘(♯‘𝐴)))
 
Theoremsymgbasfi 18995 The symmetric group on a finite index set is finite. (Contributed by SO, 9-Jul-2018.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)       (𝐴 ∈ Fin → 𝐵 ∈ Fin)
 
Theoremsymgfv 18996 The function value of a permutation. (Contributed by AV, 1-Jan-2019.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)       ((𝐹𝐵𝑋𝐴) → (𝐹𝑋) ∈ 𝐴)
 
Theoremsymgfvne 18997 The function values of a permutation for different arguments are different. (Contributed by AV, 8-Jan-2019.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)       ((𝐹𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) = 𝑍 → (𝑌𝑋 → (𝐹𝑌) ≠ 𝑍)))
 
Theoremsymgressbas 18998 The symmetric group on 𝐴 characterized as structure restriction of the monoid of endofunctions on 𝐴 to its base set. (Contributed by AV, 30-Mar-2024.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)    &   𝑀 = (EndoFMnd‘𝐴)       𝐺 = (𝑀s 𝐵)
 
Theoremsymgplusg 18999* The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Proof shortened by AV, 19-Feb-2024.) (Revised by AV, 29-Mar-2024.) (Proof shortened by AV, 14-Aug-2024.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (𝐴m 𝐴)    &    + = (+g𝐺)        + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
 
Theoremsymgov 19000 The value of the group operation of the symmetric group on 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Revised by AV, 30-Mar-2024.)
𝐺 = (SymGrp‘𝐴)    &   𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑋𝑌))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >