HomeHome Metamath Proof Explorer
Theorem List (p. 190 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30171)
  Hilbert Space Explorer  Hilbert Space Explorer
(30172-31694)
  Users' Mathboxes  Users' Mathboxes
(31695-47852)
 

Theorem List for Metamath Proof Explorer - 18901-19000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgrpinvadd 18901 The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
 
Theoremgrpsubf 18902 Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)       (𝐺 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)
 
Theoremgrpsubcl 18903 Closure of group subtraction. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
 
Theoremgrpsubrcan 18904 Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
 
Theoremgrpinvsub 18905 Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
 
Theoremgrpinvval2 18906 A df-neg 11447-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   𝑁 = (invg𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = ( 0 𝑋))
 
Theoremgrpsubid 18907 Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = 0 )
 
Theoremgrpsubid1 18908 Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)
 
Theoremgrpsubeq0 18909 If the difference between two group elements is zero, they are equal. (subeq0 11486 analog.) (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) = 0𝑋 = 𝑌))
 
Theoremgrpsubadd0sub 18910 Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ( 0 𝑌)))
 
Theoremgrpsubadd 18911 Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋))
 
Theoremgrpsubsub 18912 Double group subtraction. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
 
Theoremgrpaddsubass 18913 Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = (𝑋 + (𝑌 𝑍)))
 
Theoremgrppncan 18914 Cancellation law for subtraction (pncan 11466 analog). (Contributed by NM, 16-Apr-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑌) = 𝑋)
 
Theoremgrpnpcan 18915 Cancellation law for subtraction (npcan 11469 analog). (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) + 𝑌) = 𝑋)
 
Theoremgrpsubsub4 18916 Double group subtraction (subsub4 11493 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑍 + 𝑌)))
 
Theoremgrppnpcan2 18917 Cancellation law for mixed addition and subtraction. (pnpcan2 11500 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) (𝑌 + 𝑍)) = (𝑋 𝑌))
 
Theoremgrpnpncan 18918 Cancellation law for group subtraction. (npncan 11481 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + (𝑌 𝑍)) = (𝑋 𝑍))
 
Theoremgrpnpncan0 18919 Cancellation law for group subtraction (npncan2 11487 analog). (Contributed by AV, 24-Nov-2019.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌) + (𝑌 𝑋)) = 0 )
 
Theoremgrpnnncan2 18920 Cancellation law for group subtraction. (nnncan2 11497 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 𝑌))
 
Theoremdfgrp3lem 18921* Lemma for dfgrp3 18922. (Contributed by AV, 28-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
 
Theoremdfgrp3 18922* Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
 
Theoremdfgrp3e 18923* Alternate definition of a group as a set with a closed, associative operation, for which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ∧ (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦))))
 
Theoremgrplactfval 18924* The left group action of element 𝐴 of group 𝐺. (Contributed by Paul Chapman, 18-Mar-2008.)
𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))    &   𝑋 = (Base‘𝐺)       (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
 
Theoremgrplactval 18925* The value of the left group action of element 𝐴 of group 𝐺 at 𝐵. (Contributed by Paul Chapman, 18-Mar-2008.)
𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))    &   𝑋 = (Base‘𝐺)       ((𝐴𝑋𝐵𝑋) → ((𝐹𝐴)‘𝐵) = (𝐴 + 𝐵))
 
Theoremgrplactcnv 18926* The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘(𝐼𝐴))))
 
Theoremgrplactf1o 18927* The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴):𝑋1-1-onto𝑋)
 
Theoremgrpsubpropd 18928 Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
(𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   (𝜑 → (+g𝐺) = (+g𝐻))       (𝜑 → (-g𝐺) = (-g𝐻))
 
Theoremgrpsubpropd2 18929* Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑𝐵 = (Base‘𝐻))    &   (𝜑𝐺 ∈ Grp)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))       (𝜑 → (-g𝐺) = (-g𝐻))
 
Theoremgrp1 18930 The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Grp)
 
Theoremgrp1inv 18931 The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))
 
Theoremprdsinvlem 18932* Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅:𝐼⟶Grp)    &   (𝜑𝐹𝐵)    &    0 = (0g𝑅)    &   𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))       (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
 
Theoremprdsgrpd 18933 The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅:𝐼⟶Grp)       (𝜑𝑌 ∈ Grp)
 
Theoremprdsinvgd 18934* Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅:𝐼⟶Grp)    &   𝐵 = (Base‘𝑌)    &   𝑁 = (invg𝑌)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁𝑋) = (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥))))
 
Theorempwsgrp 18935 A structure power of a group is a group. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑅s 𝐼)       ((𝑅 ∈ Grp ∧ 𝐼𝑉) → 𝑌 ∈ Grp)
 
Theorempwsinvg 18936 Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑌)    &   𝑀 = (invg𝑅)    &   𝑁 = (invg𝑌)       ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = (𝑀𝑋))
 
Theorempwssub 18937 Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑌)    &   𝑀 = (-g𝑅)    &    = (-g𝑌)       (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹f 𝑀𝐺))
 
Theoremimasgrp2 18938* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   (𝜑𝑅𝑊)    &   ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)    &   ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))    &   (𝜑0𝑉)    &   ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))    &   ((𝜑𝑥𝑉) → 𝑁𝑉)    &   ((𝜑𝑥𝑉) → (𝐹‘(𝑁 + 𝑥)) = (𝐹0 ))       (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
 
Theoremimasgrp 18939* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   (𝜑𝑅 ∈ Grp)    &    0 = (0g𝑅)       (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
 
Theoremimasgrpf1 18940 The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015.)
𝑈 = (𝐹s 𝑅)    &   𝑉 = (Base‘𝑅)       ((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) → 𝑈 ∈ Grp)
 
Theoremqusgrp2 18941* Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑 Er 𝑉)    &   (𝜑𝑅𝑋)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))    &   ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)    &   ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))    &   (𝜑0𝑉)    &   ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)    &   ((𝜑𝑥𝑉) → 𝑁𝑉)    &   ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )       (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
 
Theoremxpsgrp 18942 The binary product of groups is a group. (Contributed by Mario Carneiro, 20-Aug-2015.)
𝑇 = (𝑅 ×s 𝑆)       ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp)
 
Theoremxpsinv 18943 Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025.)
𝑇 = (𝑅 ×s 𝑆)    &   𝑋 = (Base‘𝑅)    &   𝑌 = (Base‘𝑆)    &   (𝜑𝑅 ∈ Grp)    &   (𝜑𝑆 ∈ Grp)    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑌)    &   𝑀 = (invg𝑅)    &   𝑁 = (invg𝑆)    &   𝐼 = (invg𝑇)       (𝜑 → (𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀𝐴), (𝑁𝐵)⟩)
 
Theoremxpsgrpsub 18944 Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025.)
𝑇 = (𝑅 ×s 𝑆)    &   𝑋 = (Base‘𝑅)    &   𝑌 = (Base‘𝑆)    &   (𝜑𝑅 ∈ Grp)    &   (𝜑𝑆 ∈ Grp)    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑌)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)    &    · = (-g𝑅)    &    × = (-g𝑆)    &    = (-g𝑇)       (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
 
Theoremmhmlem 18945* Lemma for mhmmnd 18947 and ghmgrp 18949. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)       (𝜑 → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵)))
 
Theoremmhmid 18946* A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.)
((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Mnd)    &    0 = (0g𝐺)       (𝜑 → (𝐹0 ) = (0g𝐻))
 
Theoremmhmmnd 18947* The image of a monoid 𝐺 under a monoid homomorphism 𝐹 is a monoid. (Contributed by Thierry Arnoux, 25-Jan-2020.)
((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Mnd)       (𝜑𝐻 ∈ Mnd)
 
Theoremmhmfmhm 18948* The function fulfilling the conditions of mhmmnd 18947 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Mnd)       (𝜑𝐹 ∈ (𝐺 MndHom 𝐻))
 
Theoremghmgrp 18949* The image of a group 𝐺 under a group homomorphism 𝐹 is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator 𝑂 in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Grp)       (𝜑𝐻 ∈ Grp)
 
10.2.2  Group multiple operation

The "group multiple" operation (if the group is multiplicative, also called "group power" or "group exponentiation" operation), can be defined for arbitrary magmas, if the multiplier/exponent is a nonnegative integer. See also the definition in [Lang] p. 6, where an element 𝑥(of a monoid) to the power of a nonnegative integer 𝑛 is defined and denoted by 𝑥𝑛. Definition df-mulg 18951, however, defines the group multiple for arbitrary (i.e. also negative) integers. This is meaningful for groups only, and requires Definition df-minusg 18823 of the inverse operation invg.

 
Syntaxcmg 18950 Extend class notation with a function mapping a group operation to the multiple/power operation for the magma/group.
class .g
 
Definitiondf-mulg 18951* Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014.)
.g = (𝑔 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑔) ↦ if(𝑛 = 0, (0g𝑔), seq1((+g𝑔), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑔)‘(𝑠‘-𝑛))))))
 
Theoremmulgfval 18952* Group multiple (exponentiation) operation. For a shorter proof using ax-rep 5286, see mulgfvalALT 18953. (Contributed by Mario Carneiro, 11-Dec-2014.) Remove dependency on ax-rep 5286. (Revised by Rohan Ridenour, 17-Aug-2023.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝐼 = (invg𝐺)    &    · = (.g𝐺)        · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
 
TheoremmulgfvalALT 18953* Shorter proof of mulgfval 18952 using ax-rep 5286. (Contributed by Mario Carneiro, 11-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝐼 = (invg𝐺)    &    · = (.g𝐺)        · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
 
Theoremmulgval 18954 Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝐼 = (invg𝐺)    &    · = (.g𝐺)    &   𝑆 = seq1( + , (ℕ × {𝑋}))       ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
 
Theoremmulgfn 18955 Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)        · Fn (ℤ × 𝐵)
 
Theoremmulgfvi 18956 The group multiple operation is compatible with identity-function protection. (Contributed by Mario Carneiro, 21-Mar-2015.)
· = (.g𝐺)        · = (.g‘( I ‘𝐺))
 
Theoremmulg0 18957 Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    · = (.g𝐺)       (𝑋𝐵 → (0 · 𝑋) = 0 )
 
Theoremmulgnn 18958 Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    · = (.g𝐺)    &   𝑆 = seq1( + , (ℕ × {𝑋}))       ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝑆𝑁))
 
Theoremmulgnngsum 18959* Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)       ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
 
Theoremmulgnn0gsum 18960* Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)       ((𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
 
Theoremmulg1 18961 Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       (𝑋𝐵 → (1 · 𝑋) = 𝑋)
 
Theoremmulgnnp1 18962 Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
 
Theoremmulg2 18963 Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       (𝑋𝐵 → (2 · 𝑋) = (𝑋 + 𝑋))
 
Theoremmulgnegnn 18964 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
 
Theoremmulgnn0p1 18965 Group multiple (exponentiation) operation at a successor, extended to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
 
Theoremmulgnnsubcl 18966* Closure of the group multiple (exponentiation) operation in a submagma. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑆𝐵)    &   ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)       ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
 
Theoremmulgnn0subcl 18967* Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑆𝐵)    &   ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &    0 = (0g𝐺)    &   (𝜑0𝑆)       ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
 
Theoremmulgsubcl 18968* Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑆𝐵)    &   ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &    0 = (0g𝐺)    &   (𝜑0𝑆)    &   𝐼 = (invg𝐺)    &   ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)       ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
 
Theoremmulgnncl 18969 Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgnn0cl 18970 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgcl 18971 Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgneg 18972 Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
 
Theoremmulgnegneg 18973 The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
 
Theoremmulgm1 18974 Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 20-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (-1 · 𝑋) = (𝐼𝑋))
 
Theoremmulgnn0cld 18975 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 18970. (Contributed by SN, 1-Feb-2025.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgcld 18976 Deduction associated with mulgcl 18971. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgaddcomlem 18977 Lemma for mulgaddcom 18978. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
 
Theoremmulgaddcom 18978 The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))
 
Theoremmulginvcom 18979 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))
 
Theoremmulginvinv 18980 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐼‘(𝑁 · (𝐼𝑋))) = (𝑁 · 𝑋))
 
Theoremmulgnn0z 18981 A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
 
Theoremmulgz 18982 A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 )
 
Theoremmulgnndir 18983 Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
 
Theoremmulgnn0dir 18984 Sum of group multiples, generalized to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
 
Theoremmulgdirlem 18985 Lemma for mulgdir 18986. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
 
Theoremmulgdir 18986 Sum of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
 
Theoremmulgp1 18987 Group multiple (exponentiation) operation at a successor, extended to . (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
 
Theoremmulgneg2 18988 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))
 
Theoremmulgnnass 18989 Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
 
Theoremmulgnn0ass 18990 Product of group multiples, generalized to 0. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
 
Theoremmulgass 18991 Product of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
 
Theoremmulgassr 18992 Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑁 · 𝑀) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
 
Theoremmulgmodid 18993 Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))
 
Theoremmulgsubdir 18994 Distribution of group multiples over subtraction for group elements, subdir 11648 analog. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀𝑁) · 𝑋) = ((𝑀 · 𝑋) (𝑁 · 𝑋)))
 
Theoremmhmmulg 18995 A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    × = (.g𝐻)       ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
 
Theoremmulgpropd 18996* Two structures with the same group-nature have the same group multiple function. 𝐾 is expected to either be V (when strong equality is available) or 𝐵 (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
· = (.g𝐺)    &    × = (.g𝐻)    &   (𝜑𝐵 = (Base‘𝐺))    &   (𝜑𝐵 = (Base‘𝐻))    &   (𝜑𝐵𝐾)    &   ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)    &   ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))       (𝜑· = × )
 
Theoremsubmmulgcl 18997 Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015.)
= (.g𝐺)       ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) ∈ 𝑆)
 
Theoremsubmmulg 18998 A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
= (.g𝐺)    &   𝐻 = (𝐺s 𝑆)    &    · = (.g𝐻)       ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) = (𝑁 · 𝑋))
 
Theorempwsmulg 18999 Value of a group multiple in a structure power. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑌)    &    = (.g𝑌)    &    · = (.g𝑅)       (((𝑅 ∈ Mnd ∧ 𝐼𝑉) ∧ (𝑁 ∈ ℕ0𝑋𝐵𝐴𝐼)) → ((𝑁 𝑋)‘𝐴) = (𝑁 · (𝑋𝐴)))
 
10.2.3  Subgroups and Quotient groups
 
Syntaxcsubg 19000 Extend class notation with all subgroups of a group.
class SubGrp
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47852
  Copyright terms: Public domain < Previous  Next >