| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpass | Structured version Visualization version GIF version | ||
| Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18837 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndass 18635 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Mndcmnd 18626 Grpcgrp 18830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-sgrp 18611 df-mnd 18627 df-grp 18833 |
| This theorem is referenced by: grpassd 18842 grprcan 18870 grprinv 18887 grpinvid1 18888 grpinvid2 18889 grplcan 18897 grpasscan1 18898 grpasscan2 18899 grpinvadd 18915 grpsubadd 18925 grpaddsubass 18927 grpsubsub4 18930 dfgrp3 18936 grplactcnv 18940 imasgrp 18953 mulgaddcomlem 18994 mulgaddcom 18995 mulgdirlem 19002 issubg2 19038 isnsg3 19057 nmzsubg 19062 ssnmz 19063 eqgcpbl 19079 qusgrp 19083 conjghm 19146 subgga 19197 cntzsubg 19236 sylow1lem2 19496 sylow2blem1 19517 sylow2blem2 19518 sylow2blem3 19519 sylow3lem1 19524 sylow3lem2 19525 lsmass 19566 lsmmod 19572 lsmdisj2 19579 gex2abl 19748 ogrpaddltbi 20036 ogrpaddltrbid 20038 ogrpinvlt 20041 ringcom 20183 lmodass 20797 evpmodpmf1o 21521 psrgrpOLD 21882 ghmcnp 24018 qustgpopn 24023 cnncvsaddassdemo 25079 cyc3genpmlem 33106 archiabllem2c 33147 quslsm 33352 lfladdass 39051 dvhvaddass 41076 |
| Copyright terms: Public domain | W3C validator |