| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpass | Structured version Visualization version GIF version | ||
| Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18845 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndass 18643 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 Mndcmnd 18634 Grpcgrp 18838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-sgrp 18619 df-mnd 18635 df-grp 18841 |
| This theorem is referenced by: grpassd 18850 grprcan 18878 grprinv 18895 grpinvid1 18896 grpinvid2 18897 grplcan 18905 grpasscan1 18906 grpasscan2 18907 grpinvadd 18923 grpsubadd 18933 grpaddsubass 18935 grpsubsub4 18938 dfgrp3 18944 grplactcnv 18948 imasgrp 18961 mulgaddcomlem 19002 mulgaddcom 19003 mulgdirlem 19010 issubg2 19046 isnsg3 19065 nmzsubg 19070 ssnmz 19071 eqgcpbl 19087 qusgrp 19091 conjghm 19154 subgga 19205 cntzsubg 19244 sylow1lem2 19504 sylow2blem1 19525 sylow2blem2 19526 sylow2blem3 19527 sylow3lem1 19532 sylow3lem2 19533 lsmass 19574 lsmmod 19580 lsmdisj2 19587 gex2abl 19756 ogrpaddltbi 20044 ogrpaddltrbid 20046 ogrpinvlt 20049 ringcom 20191 lmodass 20802 evpmodpmf1o 21526 psrgrpOLD 21887 ghmcnp 24023 qustgpopn 24028 cnncvsaddassdemo 25083 cyc3genpmlem 33110 archiabllem2c 33154 quslsm 33360 lfladdass 39091 dvhvaddass 41115 |
| Copyright terms: Public domain | W3C validator |