| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpass | Structured version Visualization version GIF version | ||
| Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18928 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndass 18726 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 +gcplusg 17274 Mndcmnd 18717 Grpcgrp 18921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-sgrp 18702 df-mnd 18718 df-grp 18924 |
| This theorem is referenced by: grpassd 18933 grprcan 18961 grprinv 18978 grpinvid1 18979 grpinvid2 18980 grplcan 18988 grpasscan1 18989 grpasscan2 18990 grpinvadd 19006 grpsubadd 19016 grpaddsubass 19018 grpsubsub4 19021 dfgrp3 19027 grplactcnv 19031 imasgrp 19044 mulgaddcomlem 19085 mulgaddcom 19086 mulgdirlem 19093 issubg2 19129 isnsg3 19148 nmzsubg 19153 ssnmz 19154 eqgcpbl 19170 qusgrp 19174 conjghm 19237 subgga 19288 cntzsubg 19327 sylow1lem2 19586 sylow2blem1 19607 sylow2blem2 19608 sylow2blem3 19609 sylow3lem1 19614 sylow3lem2 19615 lsmass 19656 lsmmod 19662 lsmdisj2 19669 gex2abl 19838 ringcom 20246 lmodass 20843 evpmodpmf1o 21569 psrgrpOLD 21932 ghmcnp 24070 qustgpopn 24075 cnncvsaddassdemo 25134 ogrpaddltbi 33039 ogrpaddltrbid 33041 ogrpinvlt 33044 cyc3genpmlem 33115 archiabllem2c 33146 quslsm 33373 lfladdass 39049 dvhvaddass 41074 |
| Copyright terms: Public domain | W3C validator |