| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpass | Structured version Visualization version GIF version | ||
| Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18863 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndass 18661 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 Mndcmnd 18652 Grpcgrp 18856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-sgrp 18637 df-mnd 18653 df-grp 18859 |
| This theorem is referenced by: grpassd 18868 grprcan 18896 grprinv 18913 grpinvid1 18914 grpinvid2 18915 grplcan 18923 grpasscan1 18924 grpasscan2 18925 grpinvadd 18941 grpsubadd 18951 grpaddsubass 18953 grpsubsub4 18956 dfgrp3 18962 grplactcnv 18966 imasgrp 18979 mulgaddcomlem 19020 mulgaddcom 19021 mulgdirlem 19028 issubg2 19064 isnsg3 19082 nmzsubg 19087 ssnmz 19088 eqgcpbl 19104 qusgrp 19108 conjghm 19171 subgga 19222 cntzsubg 19261 sylow1lem2 19521 sylow2blem1 19542 sylow2blem2 19543 sylow2blem3 19544 sylow3lem1 19549 sylow3lem2 19550 lsmass 19591 lsmmod 19597 lsmdisj2 19604 gex2abl 19773 ogrpaddltbi 20061 ogrpaddltrbid 20063 ogrpinvlt 20066 ringcom 20208 lmodass 20819 evpmodpmf1o 21543 psrgrpOLD 21904 ghmcnp 24040 qustgpopn 24045 cnncvsaddassdemo 25100 cyc3genpmlem 33131 archiabllem2c 33175 quslsm 33381 lfladdass 39182 dvhvaddass 41206 |
| Copyright terms: Public domain | W3C validator |