Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpass | Structured version Visualization version GIF version |
Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
Ref | Expression |
---|---|
grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
grpass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18499 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mndass 18309 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
5 | 1, 4 | sylan 579 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Mndcmnd 18300 Grpcgrp 18492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-sgrp 18290 df-mnd 18301 df-grp 18495 |
This theorem is referenced by: grprcan 18528 grprinv 18544 grpinvid1 18545 grpinvid2 18546 grplcan 18552 grpasscan1 18553 grpasscan2 18554 grplmulf1o 18564 grpinvadd 18568 grpsubadd 18578 grpaddsubass 18580 grpsubsub4 18583 dfgrp3 18589 grplactcnv 18593 imasgrp 18606 mulgaddcomlem 18641 mulgaddcom 18642 mulgdirlem 18649 issubg2 18685 isnsg3 18703 nmzsubg 18708 ssnmz 18709 eqger 18721 eqgcpbl 18725 qusgrp 18726 conjghm 18780 conjnmz 18783 subgga 18821 cntzsubg 18858 sylow1lem2 19119 sylow2blem1 19140 sylow2blem2 19141 sylow2blem3 19142 sylow3lem1 19147 sylow3lem2 19148 lsmass 19190 lsmmod 19196 lsmdisj2 19203 gex2abl 19367 ringcom 19733 lmodass 20053 evpmodpmf1o 20713 psrgrp 21077 ghmcnp 23174 qustgpopn 23179 cnncvsaddassdemo 24232 ogrpaddltbi 31246 ogrpaddltrbid 31248 ogrpinvlt 31251 cyc3genpmlem 31320 archiabllem2c 31351 quslsm 31495 lfladdass 37014 dvhvaddass 39038 |
Copyright terms: Public domain | W3C validator |