| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpass | Structured version Visualization version GIF version | ||
| Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18928 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndass 18726 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Mndcmnd 18717 Grpcgrp 18921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-sgrp 18702 df-mnd 18718 df-grp 18924 |
| This theorem is referenced by: grpassd 18933 grprcan 18961 grprinv 18978 grpinvid1 18979 grpinvid2 18980 grplcan 18988 grpasscan1 18989 grpasscan2 18990 grpinvadd 19006 grpsubadd 19016 grpaddsubass 19018 grpsubsub4 19021 dfgrp3 19027 grplactcnv 19031 imasgrp 19044 mulgaddcomlem 19085 mulgaddcom 19086 mulgdirlem 19093 issubg2 19129 isnsg3 19148 nmzsubg 19153 ssnmz 19154 eqgcpbl 19170 qusgrp 19174 conjghm 19237 subgga 19288 cntzsubg 19327 sylow1lem2 19585 sylow2blem1 19606 sylow2blem2 19607 sylow2blem3 19608 sylow3lem1 19613 sylow3lem2 19614 lsmass 19655 lsmmod 19661 lsmdisj2 19668 gex2abl 19837 ringcom 20245 lmodass 20838 evpmodpmf1o 21561 psrgrpOLD 21922 ghmcnp 24058 qustgpopn 24063 cnncvsaddassdemo 25120 ogrpaddltbi 33091 ogrpaddltrbid 33093 ogrpinvlt 33096 cyc3genpmlem 33167 archiabllem2c 33198 quslsm 33425 lfladdass 39096 dvhvaddass 41121 |
| Copyright terms: Public domain | W3C validator |