![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpass | Structured version Visualization version GIF version |
Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
Ref | Expression |
---|---|
grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
grpass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18980 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mndass 18781 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
5 | 1, 4 | sylan 579 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Mndcmnd 18772 Grpcgrp 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-sgrp 18757 df-mnd 18773 df-grp 18976 |
This theorem is referenced by: grpassd 18985 grprcan 19013 grprinv 19030 grpinvid1 19031 grpinvid2 19032 grplcan 19040 grpasscan1 19041 grpasscan2 19042 grpinvadd 19058 grpsubadd 19068 grpaddsubass 19070 grpsubsub4 19073 dfgrp3 19079 grplactcnv 19083 imasgrp 19096 mulgaddcomlem 19137 mulgaddcom 19138 mulgdirlem 19145 issubg2 19181 isnsg3 19200 nmzsubg 19205 ssnmz 19206 eqgcpbl 19222 qusgrp 19226 conjghm 19289 subgga 19340 cntzsubg 19379 sylow1lem2 19641 sylow2blem1 19662 sylow2blem2 19663 sylow2blem3 19664 sylow3lem1 19669 sylow3lem2 19670 lsmass 19711 lsmmod 19717 lsmdisj2 19724 gex2abl 19893 ringcom 20303 lmodass 20896 evpmodpmf1o 21637 psrgrpOLD 22000 ghmcnp 24144 qustgpopn 24149 cnncvsaddassdemo 25216 ogrpaddltbi 33068 ogrpaddltrbid 33070 ogrpinvlt 33073 cyc3genpmlem 33144 archiabllem2c 33175 quslsm 33398 lfladdass 39029 dvhvaddass 41054 |
Copyright terms: Public domain | W3C validator |