| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpass | Structured version Visualization version GIF version | ||
| Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18879 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndass 18677 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Mndcmnd 18668 Grpcgrp 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-sgrp 18653 df-mnd 18669 df-grp 18875 |
| This theorem is referenced by: grpassd 18884 grprcan 18912 grprinv 18929 grpinvid1 18930 grpinvid2 18931 grplcan 18939 grpasscan1 18940 grpasscan2 18941 grpinvadd 18957 grpsubadd 18967 grpaddsubass 18969 grpsubsub4 18972 dfgrp3 18978 grplactcnv 18982 imasgrp 18995 mulgaddcomlem 19036 mulgaddcom 19037 mulgdirlem 19044 issubg2 19080 isnsg3 19099 nmzsubg 19104 ssnmz 19105 eqgcpbl 19121 qusgrp 19125 conjghm 19188 subgga 19239 cntzsubg 19278 sylow1lem2 19536 sylow2blem1 19557 sylow2blem2 19558 sylow2blem3 19559 sylow3lem1 19564 sylow3lem2 19565 lsmass 19606 lsmmod 19612 lsmdisj2 19619 gex2abl 19788 ringcom 20196 lmodass 20789 evpmodpmf1o 21512 psrgrpOLD 21873 ghmcnp 24009 qustgpopn 24014 cnncvsaddassdemo 25070 ogrpaddltbi 33039 ogrpaddltrbid 33041 ogrpinvlt 33044 cyc3genpmlem 33115 archiabllem2c 33156 quslsm 33383 lfladdass 39073 dvhvaddass 41098 |
| Copyright terms: Public domain | W3C validator |