| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpass | Structured version Visualization version GIF version | ||
| Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18872 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndass 18670 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Mndcmnd 18661 Grpcgrp 18865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-sgrp 18646 df-mnd 18662 df-grp 18868 |
| This theorem is referenced by: grpassd 18877 grprcan 18905 grprinv 18922 grpinvid1 18923 grpinvid2 18924 grplcan 18932 grpasscan1 18933 grpasscan2 18934 grpinvadd 18950 grpsubadd 18960 grpaddsubass 18962 grpsubsub4 18965 dfgrp3 18971 grplactcnv 18975 imasgrp 18988 mulgaddcomlem 19029 mulgaddcom 19030 mulgdirlem 19037 issubg2 19073 isnsg3 19092 nmzsubg 19097 ssnmz 19098 eqgcpbl 19114 qusgrp 19118 conjghm 19181 subgga 19232 cntzsubg 19271 sylow1lem2 19529 sylow2blem1 19550 sylow2blem2 19551 sylow2blem3 19552 sylow3lem1 19557 sylow3lem2 19558 lsmass 19599 lsmmod 19605 lsmdisj2 19612 gex2abl 19781 ringcom 20189 lmodass 20782 evpmodpmf1o 21505 psrgrpOLD 21866 ghmcnp 24002 qustgpopn 24007 cnncvsaddassdemo 25063 ogrpaddltbi 33032 ogrpaddltrbid 33034 ogrpinvlt 33037 cyc3genpmlem 33108 archiabllem2c 33149 quslsm 33376 lfladdass 39066 dvhvaddass 41091 |
| Copyright terms: Public domain | W3C validator |