| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isgrp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| isgrp.b | ⊢ 𝐵 = (Base‘𝐺) |
| isgrp.p | ⊢ + = (+g‘𝐺) |
| isgrp.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| isgrp | ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 2 | isgrp.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 1, 2 | eqtr4di 2788 | . . 3 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 4 | fveq2 6876 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
| 5 | isgrp.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 6 | 4, 5 | eqtr4di 2788 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 7 | 6 | oveqd 7422 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑚(+g‘𝑔)𝑎) = (𝑚 + 𝑎)) |
| 8 | fveq2 6876 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) | |
| 9 | isgrp.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 10 | 8, 9 | eqtr4di 2788 | . . . . 5 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
| 11 | 7, 10 | eqeq12d 2751 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ (𝑚 + 𝑎) = 0 )) |
| 12 | 3, 11 | rexeqbidv 3326 | . . 3 ⊢ (𝑔 = 𝐺 → (∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
| 13 | 3, 12 | raleqbidv 3325 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
| 14 | df-grp 18919 | . 2 ⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} | |
| 15 | 13, 14 | elrab2 3674 | 1 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Mndcmnd 18712 Grpcgrp 18916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-grp 18919 |
| This theorem is referenced by: grpmnd 18923 grpinvex 18926 grppropd 18934 isgrpd2e 18938 grp1 19030 ghmgrp 19049 primrootsunit1 42110 2zrngagrp 48224 |
| Copyright terms: Public domain | W3C validator |