![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isgrp | Structured version Visualization version GIF version |
Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
isgrp.b | ⊢ 𝐵 = (Base‘𝐺) |
isgrp.p | ⊢ + = (+g‘𝐺) |
isgrp.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
isgrp | ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
2 | isgrp.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | eqtr4di 2791 | . . 3 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
4 | fveq2 6892 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
5 | isgrp.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
6 | 4, 5 | eqtr4di 2791 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
7 | 6 | oveqd 7426 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑚(+g‘𝑔)𝑎) = (𝑚 + 𝑎)) |
8 | fveq2 6892 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) | |
9 | isgrp.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
10 | 8, 9 | eqtr4di 2791 | . . . . 5 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
11 | 7, 10 | eqeq12d 2749 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ (𝑚 + 𝑎) = 0 )) |
12 | 3, 11 | rexeqbidv 3344 | . . 3 ⊢ (𝑔 = 𝐺 → (∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
13 | 3, 12 | raleqbidv 3343 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
14 | df-grp 18822 | . 2 ⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} | |
15 | 13, 14 | elrab2 3687 | 1 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 0gc0g 17385 Mndcmnd 18625 Grpcgrp 18819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-grp 18822 |
This theorem is referenced by: grpmnd 18826 grpinvex 18829 grppropd 18837 isgrpd2e 18841 grp1 18930 ghmgrp 18949 2zrngagrp 46841 |
Copyright terms: Public domain | W3C validator |