![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isgrp | Structured version Visualization version GIF version |
Description: The predicate "is a group." (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
isgrp.b | ⊢ 𝐵 = (Base‘𝐺) |
isgrp.p | ⊢ + = (+g‘𝐺) |
isgrp.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
isgrp | ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6437 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
2 | isgrp.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | syl6eqr 2879 | . . 3 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
4 | fveq2 6437 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
5 | isgrp.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
6 | 4, 5 | syl6eqr 2879 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
7 | 6 | oveqd 6927 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑚(+g‘𝑔)𝑎) = (𝑚 + 𝑎)) |
8 | fveq2 6437 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) | |
9 | isgrp.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
10 | 8, 9 | syl6eqr 2879 | . . . . 5 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
11 | 7, 10 | eqeq12d 2840 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ (𝑚 + 𝑎) = 0 )) |
12 | 3, 11 | rexeqbidv 3365 | . . 3 ⊢ (𝑔 = 𝐺 → (∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
13 | 3, 12 | raleqbidv 3364 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
14 | df-grp 17786 | . 2 ⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} | |
15 | 13, 14 | elrab2 3589 | 1 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ∃wrex 3118 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 +gcplusg 16312 0gc0g 16460 Mndcmnd 17654 Grpcgrp 17783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-iota 6090 df-fv 6135 df-ov 6913 df-grp 17786 |
This theorem is referenced by: grpmnd 17790 grpinvex 17793 grppropd 17798 isgrpd2e 17802 grp1 17883 ghmgrp 17900 2zrngagrp 42804 |
Copyright terms: Public domain | W3C validator |