MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrp Structured version   Visualization version   GIF version

Theorem isgrp 17789
Description: The predicate "is a group." (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrp.b 𝐵 = (Base‘𝐺)
isgrp.p + = (+g𝐺)
isgrp.z 0 = (0g𝐺)
Assertion
Ref Expression
isgrp (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
Distinct variable groups:   𝑚,𝑎,𝐵   𝐺,𝑎,𝑚
Allowed substitution hints:   + (𝑚,𝑎)   0 (𝑚,𝑎)

Proof of Theorem isgrp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6437 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 isgrp.b . . . 4 𝐵 = (Base‘𝐺)
31, 2syl6eqr 2879 . . 3 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 fveq2 6437 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
5 isgrp.p . . . . . . 7 + = (+g𝐺)
64, 5syl6eqr 2879 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
76oveqd 6927 . . . . 5 (𝑔 = 𝐺 → (𝑚(+g𝑔)𝑎) = (𝑚 + 𝑎))
8 fveq2 6437 . . . . . 6 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
9 isgrp.z . . . . . 6 0 = (0g𝐺)
108, 9syl6eqr 2879 . . . . 5 (𝑔 = 𝐺 → (0g𝑔) = 0 )
117, 10eqeq12d 2840 . . . 4 (𝑔 = 𝐺 → ((𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ (𝑚 + 𝑎) = 0 ))
123, 11rexeqbidv 3365 . . 3 (𝑔 = 𝐺 → (∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ ∃𝑚𝐵 (𝑚 + 𝑎) = 0 ))
133, 12raleqbidv 3364 . 2 (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
14 df-grp 17786 . 2 Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔)}
1513, 14elrab2 3589 1 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  wrex 3118  cfv 6127  (class class class)co 6910  Basecbs 16229  +gcplusg 16312  0gc0g 16460  Mndcmnd 17654  Grpcgrp 17783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-iota 6090  df-fv 6135  df-ov 6913  df-grp 17786
This theorem is referenced by:  grpmnd  17790  grpinvex  17793  grppropd  17798  isgrpd2e  17802  grp1  17883  ghmgrp  17900  2zrngagrp  42804
  Copyright terms: Public domain W3C validator