MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrp Structured version   Visualization version   GIF version

Theorem isgrp 18922
Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrp.b 𝐵 = (Base‘𝐺)
isgrp.p + = (+g𝐺)
isgrp.z 0 = (0g𝐺)
Assertion
Ref Expression
isgrp (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
Distinct variable groups:   𝑚,𝑎,𝐵   𝐺,𝑎,𝑚
Allowed substitution hints:   + (𝑚,𝑎)   0 (𝑚,𝑎)

Proof of Theorem isgrp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 isgrp.b . . . 4 𝐵 = (Base‘𝐺)
31, 2eqtr4di 2788 . . 3 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 fveq2 6876 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
5 isgrp.p . . . . . . 7 + = (+g𝐺)
64, 5eqtr4di 2788 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
76oveqd 7422 . . . . 5 (𝑔 = 𝐺 → (𝑚(+g𝑔)𝑎) = (𝑚 + 𝑎))
8 fveq2 6876 . . . . . 6 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
9 isgrp.z . . . . . 6 0 = (0g𝐺)
108, 9eqtr4di 2788 . . . . 5 (𝑔 = 𝐺 → (0g𝑔) = 0 )
117, 10eqeq12d 2751 . . . 4 (𝑔 = 𝐺 → ((𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ (𝑚 + 𝑎) = 0 ))
123, 11rexeqbidv 3326 . . 3 (𝑔 = 𝐺 → (∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ ∃𝑚𝐵 (𝑚 + 𝑎) = 0 ))
133, 12raleqbidv 3325 . 2 (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
14 df-grp 18919 . 2 Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔)}
1513, 14elrab2 3674 1 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Mndcmnd 18712  Grpcgrp 18916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-grp 18919
This theorem is referenced by:  grpmnd  18923  grpinvex  18926  grppropd  18934  isgrpd2e  18938  grp1  19030  ghmgrp  19049  primrootsunit1  42110  2zrngagrp  48224
  Copyright terms: Public domain W3C validator