MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrp Structured version   Visualization version   GIF version

Theorem isgrp 18836
Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrp.b 𝐵 = (Base‘𝐺)
isgrp.p + = (+g𝐺)
isgrp.z 0 = (0g𝐺)
Assertion
Ref Expression
isgrp (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
Distinct variable groups:   𝑚,𝑎,𝐵   𝐺,𝑎,𝑚
Allowed substitution hints:   + (𝑚,𝑎)   0 (𝑚,𝑎)

Proof of Theorem isgrp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 isgrp.b . . . 4 𝐵 = (Base‘𝐺)
31, 2eqtr4di 2782 . . 3 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 fveq2 6826 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
5 isgrp.p . . . . . . 7 + = (+g𝐺)
64, 5eqtr4di 2782 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
76oveqd 7370 . . . . 5 (𝑔 = 𝐺 → (𝑚(+g𝑔)𝑎) = (𝑚 + 𝑎))
8 fveq2 6826 . . . . . 6 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
9 isgrp.z . . . . . 6 0 = (0g𝐺)
108, 9eqtr4di 2782 . . . . 5 (𝑔 = 𝐺 → (0g𝑔) = 0 )
117, 10eqeq12d 2745 . . . 4 (𝑔 = 𝐺 → ((𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ (𝑚 + 𝑎) = 0 ))
123, 11rexeqbidv 3311 . . 3 (𝑔 = 𝐺 → (∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ ∃𝑚𝐵 (𝑚 + 𝑎) = 0 ))
133, 12raleqbidv 3310 . 2 (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
14 df-grp 18833 . 2 Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔)}
1513, 14elrab2 3653 1 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Mndcmnd 18626  Grpcgrp 18830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-grp 18833
This theorem is referenced by:  grpmnd  18837  grpinvex  18840  grppropd  18848  isgrpd2e  18852  grp1  18944  ghmgrp  18963  primrootsunit1  42070  2zrngagrp  48234
  Copyright terms: Public domain W3C validator