![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grprinv | Structured version Visualization version GIF version |
Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinv.p | ⊢ + = (+g‘𝐺) |
grpinv.u | ⊢ 0 = (0g‘𝐺) |
grpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grprinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinv.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | grpcl 18972 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
4 | grpinv.u | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 1, 4 | grpidcl 18996 | . 2 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
6 | 1, 2, 4 | grplid 18998 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
7 | 1, 2 | grpass 18973 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
8 | 1, 2, 4 | grpinvex 18974 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
9 | simpr 484 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | grpinv.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
11 | 1, 10 | grpinvcl 19018 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
12 | 1, 2, 4, 10 | grplinv 19020 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
13 | 3, 5, 6, 7, 8, 9, 11, 12 | grpinva 18700 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Grpcgrp 18964 invgcminusg 18965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 |
This theorem is referenced by: grpinvid1 19022 grpinvid2 19023 grprinvd 19026 grplrinv 19027 grpasscan1 19032 grpinvinv 19036 grplmulf1o 19044 grpinvadd 19049 grpsubid 19055 dfgrp3 19070 mulgdirlem 19136 subginv 19164 nmzsubg 19196 eqger 19209 qusinv 19221 ghminv 19254 gacan 19336 cntzsubg 19370 oppggrp 19391 oppginv 19393 psgnuni 19532 sylow2blem3 19655 frgpuplem 19805 ringnegl 20316 unitrinv 20411 isdrng2 20760 lmodvnegid 20919 lmodvsinv2 21054 lspsolvlem 21162 evpmodpmf1o 21632 grpvrinv 22419 mdetralt 22630 ghmcnp 24139 qustgpopn 24144 isngp4 24641 clmvsrinv 25154 ogrpinv0le 33075 ogrpaddltbi 33078 ogrpinv0lt 33082 ogrpinvlt 33083 archiabllem1b 33182 orngsqr 33314 quslsm 33413 lbsdiflsp0 33654 fldhmf1 42072 ldepsprlem 48318 |
Copyright terms: Public domain | W3C validator |