![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grprinv | Structured version Visualization version GIF version |
Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinv.p | ⊢ + = (+g‘𝐺) |
grpinv.u | ⊢ 0 = (0g‘𝐺) |
grpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grprinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinv.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | grpcl 18827 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
4 | grpinv.u | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 1, 4 | grpidcl 18850 | . 2 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
6 | 1, 2, 4 | grplid 18852 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
7 | 1, 2 | grpass 18828 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
8 | 1, 2, 4 | grpinvex 18829 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
9 | simpr 486 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | grpinv.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
11 | 1, 10 | grpinvcl 18872 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
12 | 1, 2, 4, 10 | grplinv 18874 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
13 | 3, 5, 6, 7, 8, 9, 11, 12 | grpinva 18593 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 0gc0g 17385 Grpcgrp 18819 invgcminusg 18820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-riota 7365 df-ov 7412 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 |
This theorem is referenced by: grpinvid1 18876 grpinvid2 18877 grprinvd 18880 grplrinv 18881 grpasscan1 18886 grpinvinv 18890 grplmulf1o 18897 grpinvadd 18901 grpsubid 18907 dfgrp3 18922 mulgdirlem 18985 subginv 19013 nmzsubg 19045 eqger 19058 qusinv 19069 ghminv 19099 conjnmz 19126 gacan 19169 cntzsubg 19203 oppggrp 19224 oppginv 19226 psgnuni 19367 sylow2blem3 19490 frgpuplem 19640 ringnegl 20114 unitrinv 20208 isdrng2 20371 lmodvnegid 20514 lmodvsinv2 20648 lspsolvlem 20755 evpmodpmf1o 21149 grpvrinv 21898 mdetralt 22110 ghmcnp 23619 qustgpopn 23624 isngp4 24121 clmvsrinv 24623 ogrpinv0le 32233 ogrpaddltbi 32236 ogrpinv0lt 32240 ogrpinvlt 32241 archiabllem1b 32338 orngsqr 32422 quslsm 32516 lbsdiflsp0 32711 fldhmf1 40955 ldepsprlem 47153 |
Copyright terms: Public domain | W3C validator |