![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grprinv | Structured version Visualization version GIF version |
Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinv.p | ⊢ + = (+g‘𝐺) |
grpinv.u | ⊢ 0 = (0g‘𝐺) |
grpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grprinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinv.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | grpcl 18981 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
4 | grpinv.u | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 1, 4 | grpidcl 19005 | . 2 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
6 | 1, 2, 4 | grplid 19007 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
7 | 1, 2 | grpass 18982 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
8 | 1, 2, 4 | grpinvex 18983 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
9 | simpr 484 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | grpinv.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
11 | 1, 10 | grpinvcl 19027 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
12 | 1, 2, 4, 10 | grplinv 19029 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
13 | 3, 5, 6, 7, 8, 9, 11, 12 | grpinva 18712 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Grpcgrp 18973 invgcminusg 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 |
This theorem is referenced by: grpinvid1 19031 grpinvid2 19032 grprinvd 19035 grplrinv 19036 grpasscan1 19041 grpinvinv 19045 grplmulf1o 19053 grpinvadd 19058 grpsubid 19064 dfgrp3 19079 mulgdirlem 19145 subginv 19173 nmzsubg 19205 eqger 19218 qusinv 19230 ghminv 19263 gacan 19345 cntzsubg 19379 oppggrp 19400 oppginv 19402 psgnuni 19541 sylow2blem3 19664 frgpuplem 19814 ringnegl 20325 unitrinv 20420 isdrng2 20765 lmodvnegid 20924 lmodvsinv2 21059 lspsolvlem 21167 evpmodpmf1o 21637 grpvrinv 22424 mdetralt 22635 ghmcnp 24144 qustgpopn 24149 isngp4 24646 clmvsrinv 25159 ogrpinv0le 33065 ogrpaddltbi 33068 ogrpinv0lt 33072 ogrpinvlt 33073 archiabllem1b 33172 orngsqr 33299 quslsm 33398 lbsdiflsp0 33639 fldhmf1 42047 ldepsprlem 48201 |
Copyright terms: Public domain | W3C validator |