Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grprinv | Structured version Visualization version GIF version |
Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinv.p | ⊢ + = (+g‘𝐺) |
grpinv.u | ⊢ 0 = (0g‘𝐺) |
grpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grprinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinv.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | grpcl 18585 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
4 | grpinv.u | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 1, 4 | grpidcl 18607 | . 2 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
6 | 1, 2, 4 | grplid 18609 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
7 | 1, 2 | grpass 18586 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
8 | 1, 2, 4 | grpinvex 18587 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
9 | simpr 485 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | grpinv.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
11 | 1, 10 | grpinvcl 18627 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
12 | 1, 2, 4, 10 | grplinv 18628 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
13 | 3, 5, 6, 7, 8, 9, 11, 12 | grprinvd 18358 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Grpcgrp 18577 invgcminusg 18578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 |
This theorem is referenced by: grpinvid1 18630 grpinvid2 18631 grplrinv 18633 grpasscan1 18638 grpinvinv 18642 grplmulf1o 18649 grpinvadd 18653 grpsubid 18659 dfgrp3 18674 mulgdirlem 18734 subginv 18762 nmzsubg 18793 eqger 18806 qusinv 18815 ghminv 18841 conjnmz 18868 gacan 18911 cntzsubg 18943 oppggrp 18964 oppginv 18966 psgnuni 19107 sylow2blem3 19227 frgpuplem 19378 ringnegl 19833 unitrinv 19920 isdrng2 20001 lmodvnegid 20165 lmodvsinv2 20299 lspsolvlem 20404 evpmodpmf1o 20801 grpvrinv 21545 mdetralt 21757 ghmcnp 23266 qustgpopn 23271 isngp4 23768 clmvsrinv 24270 ogrpinv0le 31341 ogrpaddltbi 31344 ogrpinv0lt 31348 ogrpinvlt 31349 archiabllem1b 31446 orngsqr 31503 quslsm 31593 lbsdiflsp0 31707 ldepsprlem 45813 |
Copyright terms: Public domain | W3C validator |