| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grprinv | Structured version Visualization version GIF version | ||
| Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinv.p | ⊢ + = (+g‘𝐺) |
| grpinv.u | ⊢ 0 = (0g‘𝐺) |
| grpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grprinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinv.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | 1, 2 | grpcl 18851 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 4 | grpinv.u | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 1, 4 | grpidcl 18875 | . 2 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 6 | 1, 2, 4 | grplid 18877 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
| 7 | 1, 2 | grpass 18852 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 8 | 1, 2, 4 | grpinvex 18853 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
| 9 | simpr 484 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 10 | grpinv.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 11 | 1, 10 | grpinvcl 18897 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 12 | 1, 2, 4, 10 | grplinv 18899 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| 13 | 3, 5, 6, 7, 8, 9, 11, 12 | grpinva 18579 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 0gc0g 17340 Grpcgrp 18843 invgcminusg 18844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 |
| This theorem is referenced by: grpinvid1 18901 grpinvid2 18902 grprinvd 18905 grplrinv 18906 grpasscan1 18911 grpinvinv 18915 grplmulf1o 18923 grpinvadd 18928 grpsubid 18934 dfgrp3 18949 mulgdirlem 19015 subginv 19043 nmzsubg 19075 eqger 19088 qusinv 19100 ghminv 19133 gacan 19215 cntzsubg 19249 oppggrp 19267 oppginv 19269 psgnuni 19409 sylow2blem3 19532 frgpuplem 19682 ogrpinv0le 20046 ogrpaddltbi 20049 ogrpinv0lt 20053 ogrpinvlt 20054 ringnegl 20218 unitrinv 20310 isdrng2 20656 orngsqr 20779 lmodvnegid 20835 lmodvsinv2 20969 lspsolvlem 21077 evpmodpmf1o 21531 grpvrinv 22312 mdetralt 22521 ghmcnp 24028 qustgpopn 24033 isngp4 24525 clmvsrinv 25032 archiabllem1b 33156 quslsm 33365 lbsdiflsp0 33634 fldhmf1 42122 ldepsprlem 48503 |
| Copyright terms: Public domain | W3C validator |