MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprinv Structured version   Visualization version   GIF version

Theorem grprinv 18905
Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grprinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )

Proof of Theorem grprinv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . 3 𝐵 = (Base‘𝐺)
2 grpinv.p . . 3 + = (+g𝐺)
31, 2grpcl 18856 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
4 grpinv.u . . 3 0 = (0g𝐺)
51, 4grpidcl 18880 . 2 (𝐺 ∈ Grp → 0𝐵)
61, 2, 4grplid 18882 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
71, 2grpass 18857 . 2 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
81, 2, 4grpinvex 18858 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
9 simpr 484 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝑋𝐵)
10 grpinv.n . . 3 𝑁 = (invg𝐺)
111, 10grpinvcl 18902 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
121, 2, 4, 10grplinv 18904 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
133, 5, 6, 7, 8, 9, 11, 12grpinva 18584 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  Grpcgrp 18848  invgcminusg 18849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7309  df-ov 7355  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852
This theorem is referenced by:  grpinvid1  18906  grpinvid2  18907  grprinvd  18910  grplrinv  18911  grpasscan1  18916  grpinvinv  18920  grplmulf1o  18928  grpinvadd  18933  grpsubid  18939  dfgrp3  18954  mulgdirlem  19020  subginv  19048  nmzsubg  19079  eqger  19092  qusinv  19104  ghminv  19137  gacan  19219  cntzsubg  19253  oppggrp  19271  oppginv  19273  psgnuni  19413  sylow2blem3  19536  frgpuplem  19686  ogrpinv0le  20050  ogrpaddltbi  20053  ogrpinv0lt  20057  ogrpinvlt  20058  ringnegl  20222  unitrinv  20314  isdrng2  20660  orngsqr  20783  lmodvnegid  20839  lmodvsinv2  20973  lspsolvlem  21081  evpmodpmf1o  21535  grpvrinv  22315  mdetralt  22524  ghmcnp  24031  qustgpopn  24036  isngp4  24528  clmvsrinv  25035  archiabllem1b  33168  quslsm  33377  lbsdiflsp0  33660  fldhmf1  42203  ldepsprlem  48597
  Copyright terms: Public domain W3C validator