MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprinv Structured version   Visualization version   GIF version

Theorem grprinv 19009
Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grprinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )

Proof of Theorem grprinv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . 3 𝐵 = (Base‘𝐺)
2 grpinv.p . . 3 + = (+g𝐺)
31, 2grpcl 18960 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
4 grpinv.u . . 3 0 = (0g𝐺)
51, 4grpidcl 18984 . 2 (𝐺 ∈ Grp → 0𝐵)
61, 2, 4grplid 18986 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
71, 2grpass 18961 . 2 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
81, 2, 4grpinvex 18962 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
9 simpr 484 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝑋𝐵)
10 grpinv.n . . 3 𝑁 = (invg𝐺)
111, 10grpinvcl 19006 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
121, 2, 4, 10grplinv 19008 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
133, 5, 6, 7, 8, 9, 11, 12grpinva 18688 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  0gc0g 17485  Grpcgrp 18952  invgcminusg 18953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-riota 7389  df-ov 7435  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956
This theorem is referenced by:  grpinvid1  19010  grpinvid2  19011  grprinvd  19014  grplrinv  19015  grpasscan1  19020  grpinvinv  19024  grplmulf1o  19032  grpinvadd  19037  grpsubid  19043  dfgrp3  19058  mulgdirlem  19124  subginv  19152  nmzsubg  19184  eqger  19197  qusinv  19209  ghminv  19242  gacan  19324  cntzsubg  19358  oppggrp  19377  oppginv  19379  psgnuni  19518  sylow2blem3  19641  frgpuplem  19791  ringnegl  20300  unitrinv  20395  isdrng2  20744  lmodvnegid  20903  lmodvsinv2  21037  lspsolvlem  21145  evpmodpmf1o  21615  grpvrinv  22404  mdetralt  22615  ghmcnp  24124  qustgpopn  24129  isngp4  24626  clmvsrinv  25141  ogrpinv0le  33093  ogrpaddltbi  33096  ogrpinv0lt  33100  ogrpinvlt  33101  archiabllem1b  33200  orngsqr  33335  quslsm  33434  lbsdiflsp0  33678  fldhmf1  42092  ldepsprlem  48394
  Copyright terms: Public domain W3C validator