MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsgrp Structured version   Visualization version   GIF version

Theorem grpsgrp 18857
Description: A group is a semigroup. (Contributed by AV, 28-Aug-2021.)
Assertion
Ref Expression
grpsgrp (𝐺 ∈ Grp → 𝐺 ∈ Smgrp)

Proof of Theorem grpsgrp
StepHypRef Expression
1 grpmnd 18837 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 mndsgrp 18632 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
31, 2syl 17 1 (𝐺 ∈ Grp → 𝐺 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Smgrpcsgrp 18610  Mndcmnd 18626  Grpcgrp 18830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-mnd 18627  df-grp 18833
This theorem is referenced by:  dfgrp2  18859  dfgrp3  18936  isarchi3  33139
  Copyright terms: Public domain W3C validator