| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsgrp | Structured version Visualization version GIF version | ||
| Description: A group is a semigroup. (Contributed by AV, 28-Aug-2021.) |
| Ref | Expression |
|---|---|
| grpsgrp | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18837 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | mndsgrp 18632 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Smgrpcsgrp 18610 Mndcmnd 18626 Grpcgrp 18830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-mnd 18627 df-grp 18833 |
| This theorem is referenced by: dfgrp2 18859 dfgrp3 18936 isarchi3 33139 |
| Copyright terms: Public domain | W3C validator |