MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsgrp Structured version   Visualization version   GIF version

Theorem grpsgrp 18883
Description: A group is a semigroup. (Contributed by AV, 28-Aug-2021.)
Assertion
Ref Expression
grpsgrp (𝐺 ∈ Grp → 𝐺 ∈ Smgrp)

Proof of Theorem grpsgrp
StepHypRef Expression
1 grpmnd 18863 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 mndsgrp 18658 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
31, 2syl 17 1 (𝐺 ∈ Grp → 𝐺 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Smgrpcsgrp 18636  Mndcmnd 18652  Grpcgrp 18856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-mnd 18653  df-grp 18859
This theorem is referenced by:  dfgrp2  18885  dfgrp3  18962  isarchi3  33167
  Copyright terms: Public domain W3C validator