| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsgrp | Structured version Visualization version GIF version | ||
| Description: A group is a semigroup. (Contributed by AV, 28-Aug-2021.) |
| Ref | Expression |
|---|---|
| grpsgrp | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18863 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | mndsgrp 18658 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Smgrpcsgrp 18636 Mndcmnd 18652 Grpcgrp 18856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-mnd 18653 df-grp 18859 |
| This theorem is referenced by: dfgrp2 18885 dfgrp3 18962 isarchi3 33167 |
| Copyright terms: Public domain | W3C validator |