MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsgrp Structured version   Visualization version   GIF version

Theorem grpsgrp 18116
Description: A group is a semigroup. (Contributed by AV, 28-Aug-2021.)
Assertion
Ref Expression
grpsgrp (𝐺 ∈ Grp → 𝐺 ∈ Smgrp)

Proof of Theorem grpsgrp
StepHypRef Expression
1 grpmnd 18099 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 mndsgrp 17906 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
31, 2syl 17 1 (𝐺 ∈ Grp → 𝐺 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2115  Smgrpcsgrp 17889  Mndcmnd 17900  Grpcgrp 18092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-nul 5191
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-iota 6295  df-fv 6344  df-ov 7141  df-mnd 17901  df-grp 18095
This theorem is referenced by:  dfgrp2  18117  dfgrp3  18187  isarchi3  30834
  Copyright terms: Public domain W3C validator