Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp3 Structured version   Visualization version   GIF version

Theorem dfgrp3 18189
 Description: Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b 𝐵 = (Base‘𝐺)
dfgrp3.p + = (+g𝐺)
Assertion
Ref Expression
dfgrp3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
Distinct variable groups:   𝐵,𝑙,𝑟,𝑥,𝑦   𝐺,𝑙,𝑟,𝑥,𝑦   + ,𝑙,𝑟,𝑥,𝑦

Proof of Theorem dfgrp3
Dummy variables 𝑎 𝑖 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsgrp 18118 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Smgrp)
2 dfgrp3.b . . . 4 𝐵 = (Base‘𝐺)
32grpbn0 18123 . . 3 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
4 simpl 486 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
5 simpr 488 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
65adantl 485 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
7 simpl 486 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
87adantl 485 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
9 eqid 2824 . . . . . . . 8 (-g𝐺) = (-g𝐺)
102, 9grpsubcl 18170 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝑦(-g𝐺)𝑥) ∈ 𝐵)
114, 6, 8, 10syl3anc 1368 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(-g𝐺)𝑥) ∈ 𝐵)
12 oveq1 7147 . . . . . . . 8 (𝑙 = (𝑦(-g𝐺)𝑥) → (𝑙 + 𝑥) = ((𝑦(-g𝐺)𝑥) + 𝑥))
1312eqeq1d 2826 . . . . . . 7 (𝑙 = (𝑦(-g𝐺)𝑥) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦))
1413adantl 485 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑙 = (𝑦(-g𝐺)𝑥)) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦))
15 dfgrp3.p . . . . . . . 8 + = (+g𝐺)
162, 15, 9grpnpcan 18182 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦)
174, 6, 8, 16syl3anc 1368 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦)
1811, 14, 17rspcedvd 3611 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦)
19 eqid 2824 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
202, 19grpinvcl 18142 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
2120adantrr 716 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑥) ∈ 𝐵)
222, 15grpcl 18102 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑥) ∈ 𝐵𝑦𝐵) → (((invg𝐺)‘𝑥) + 𝑦) ∈ 𝐵)
234, 21, 6, 22syl3anc 1368 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑥) + 𝑦) ∈ 𝐵)
24 oveq2 7148 . . . . . . . 8 (𝑟 = (((invg𝐺)‘𝑥) + 𝑦) → (𝑥 + 𝑟) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
2524eqeq1d 2826 . . . . . . 7 (𝑟 = (((invg𝐺)‘𝑥) + 𝑦) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦))
2625adantl 485 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑟 = (((invg𝐺)‘𝑥) + 𝑦)) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦))
27 eqid 2824 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
282, 15, 27, 19grprinv 18144 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 + ((invg𝐺)‘𝑥)) = (0g𝐺))
2928adantrr 716 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + ((invg𝐺)‘𝑥)) = (0g𝐺))
3029oveq1d 7155 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = ((0g𝐺) + 𝑦))
312, 15grpass 18103 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
324, 8, 21, 6, 31syl13anc 1369 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
33 grpmnd 18101 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
342, 15, 27mndlid 17922 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑦𝐵) → ((0g𝐺) + 𝑦) = 𝑦)
3533, 5, 34syl2an 598 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((0g𝐺) + 𝑦) = 𝑦)
3630, 32, 353eqtr3d 2867 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦)
3723, 26, 36rspcedvd 3611 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)
3818, 37jca 515 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦))
3938ralrimivva 3185 . . 3 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦))
401, 3, 393jca 1125 . 2 (𝐺 ∈ Grp → (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
41 simp1 1133 . . 3 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Smgrp)
422, 15dfgrp3lem 18188 . . 3 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
432, 15dfgrp2 18119 . . 3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
4441, 42, 43sylanbrc 586 . 2 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Grp)
4540, 44impbii 212 1 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3013  ∀wral 3132  ∃wrex 3133  ∅c0 4274  ‘cfv 6338  (class class class)co 7140  Basecbs 16474  +gcplusg 16556  0gc0g 16704  Smgrpcsgrp 17891  Mndcmnd 17902  Grpcgrp 18094  invgcminusg 18095  -gcsg 18096 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7674  df-2nd 7675  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-minusg 18098  df-sbg 18099 This theorem is referenced by:  dfgrp3e  18190
 Copyright terms: Public domain W3C validator