MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp3 Structured version   Visualization version   GIF version

Theorem dfgrp3 18674
Description: Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b 𝐵 = (Base‘𝐺)
dfgrp3.p + = (+g𝐺)
Assertion
Ref Expression
dfgrp3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
Distinct variable groups:   𝐵,𝑙,𝑟,𝑥,𝑦   𝐺,𝑙,𝑟,𝑥,𝑦   + ,𝑙,𝑟,𝑥,𝑦

Proof of Theorem dfgrp3
Dummy variables 𝑎 𝑖 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsgrp 18603 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Smgrp)
2 dfgrp3.b . . . 4 𝐵 = (Base‘𝐺)
32grpbn0 18608 . . 3 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
4 simpl 483 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
5 simpr 485 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
65adantl 482 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
7 simpl 483 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
87adantl 482 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
9 eqid 2738 . . . . . . . 8 (-g𝐺) = (-g𝐺)
102, 9grpsubcl 18655 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝑦(-g𝐺)𝑥) ∈ 𝐵)
114, 6, 8, 10syl3anc 1370 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(-g𝐺)𝑥) ∈ 𝐵)
12 oveq1 7282 . . . . . . . 8 (𝑙 = (𝑦(-g𝐺)𝑥) → (𝑙 + 𝑥) = ((𝑦(-g𝐺)𝑥) + 𝑥))
1312eqeq1d 2740 . . . . . . 7 (𝑙 = (𝑦(-g𝐺)𝑥) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦))
1413adantl 482 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑙 = (𝑦(-g𝐺)𝑥)) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦))
15 dfgrp3.p . . . . . . . 8 + = (+g𝐺)
162, 15, 9grpnpcan 18667 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦)
174, 6, 8, 16syl3anc 1370 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦)
1811, 14, 17rspcedvd 3563 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦)
19 eqid 2738 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
202, 19grpinvcl 18627 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
2120adantrr 714 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑥) ∈ 𝐵)
222, 15grpcl 18585 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑥) ∈ 𝐵𝑦𝐵) → (((invg𝐺)‘𝑥) + 𝑦) ∈ 𝐵)
234, 21, 6, 22syl3anc 1370 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑥) + 𝑦) ∈ 𝐵)
24 oveq2 7283 . . . . . . . 8 (𝑟 = (((invg𝐺)‘𝑥) + 𝑦) → (𝑥 + 𝑟) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
2524eqeq1d 2740 . . . . . . 7 (𝑟 = (((invg𝐺)‘𝑥) + 𝑦) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦))
2625adantl 482 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑟 = (((invg𝐺)‘𝑥) + 𝑦)) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦))
27 eqid 2738 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
282, 15, 27, 19grprinv 18629 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 + ((invg𝐺)‘𝑥)) = (0g𝐺))
2928adantrr 714 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + ((invg𝐺)‘𝑥)) = (0g𝐺))
3029oveq1d 7290 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = ((0g𝐺) + 𝑦))
312, 15grpass 18586 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
324, 8, 21, 6, 31syl13anc 1371 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
33 grpmnd 18584 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
342, 15, 27mndlid 18405 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑦𝐵) → ((0g𝐺) + 𝑦) = 𝑦)
3533, 5, 34syl2an 596 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((0g𝐺) + 𝑦) = 𝑦)
3630, 32, 353eqtr3d 2786 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦)
3723, 26, 36rspcedvd 3563 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)
3818, 37jca 512 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦))
3938ralrimivva 3123 . . 3 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦))
401, 3, 393jca 1127 . 2 (𝐺 ∈ Grp → (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
41 simp1 1135 . . 3 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Smgrp)
422, 15dfgrp3lem 18673 . . 3 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
432, 15dfgrp2 18604 . . 3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
4441, 42, 43sylanbrc 583 . 2 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Grp)
4540, 44impbii 208 1 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  c0 4256  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Smgrpcsgrp 18374  Mndcmnd 18385  Grpcgrp 18577  invgcminusg 18578  -gcsg 18579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582
This theorem is referenced by:  dfgrp3e  18675
  Copyright terms: Public domain W3C validator