MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp3 Structured version   Visualization version   GIF version

Theorem dfgrp3 18918
Description: Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b 𝐵 = (Base‘𝐺)
dfgrp3.p + = (+g𝐺)
Assertion
Ref Expression
dfgrp3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
Distinct variable groups:   𝐵,𝑙,𝑟,𝑥,𝑦   𝐺,𝑙,𝑟,𝑥,𝑦   + ,𝑙,𝑟,𝑥,𝑦

Proof of Theorem dfgrp3
Dummy variables 𝑎 𝑖 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsgrp 18842 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Smgrp)
2 dfgrp3.b . . . 4 𝐵 = (Base‘𝐺)
32grpbn0 18847 . . 3 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
4 simpl 483 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
5 simpr 485 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
65adantl 482 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
7 simpl 483 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
87adantl 482 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
9 eqid 2732 . . . . . . . 8 (-g𝐺) = (-g𝐺)
102, 9grpsubcl 18899 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝑦(-g𝐺)𝑥) ∈ 𝐵)
114, 6, 8, 10syl3anc 1371 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(-g𝐺)𝑥) ∈ 𝐵)
12 oveq1 7412 . . . . . . . 8 (𝑙 = (𝑦(-g𝐺)𝑥) → (𝑙 + 𝑥) = ((𝑦(-g𝐺)𝑥) + 𝑥))
1312eqeq1d 2734 . . . . . . 7 (𝑙 = (𝑦(-g𝐺)𝑥) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦))
1413adantl 482 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑙 = (𝑦(-g𝐺)𝑥)) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦))
15 dfgrp3.p . . . . . . . 8 + = (+g𝐺)
162, 15, 9grpnpcan 18911 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦)
174, 6, 8, 16syl3anc 1371 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦)
1811, 14, 17rspcedvd 3614 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦)
19 eqid 2732 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
202, 19grpinvcl 18868 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
2120adantrr 715 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑥) ∈ 𝐵)
222, 15, 4, 21, 6grpcld 18829 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑥) + 𝑦) ∈ 𝐵)
23 oveq2 7413 . . . . . . . 8 (𝑟 = (((invg𝐺)‘𝑥) + 𝑦) → (𝑥 + 𝑟) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
2423eqeq1d 2734 . . . . . . 7 (𝑟 = (((invg𝐺)‘𝑥) + 𝑦) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦))
2524adantl 482 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑟 = (((invg𝐺)‘𝑥) + 𝑦)) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦))
26 eqid 2732 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
272, 15, 26, 19grprinv 18871 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 + ((invg𝐺)‘𝑥)) = (0g𝐺))
2827adantrr 715 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + ((invg𝐺)‘𝑥)) = (0g𝐺))
2928oveq1d 7420 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = ((0g𝐺) + 𝑦))
302, 15grpass 18824 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
314, 8, 21, 6, 30syl13anc 1372 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
32 grpmnd 18822 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
332, 15, 26mndlid 18641 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑦𝐵) → ((0g𝐺) + 𝑦) = 𝑦)
3432, 5, 33syl2an 596 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((0g𝐺) + 𝑦) = 𝑦)
3529, 31, 343eqtr3d 2780 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦)
3622, 25, 35rspcedvd 3614 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)
3718, 36jca 512 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦))
3837ralrimivva 3200 . . 3 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦))
391, 3, 383jca 1128 . 2 (𝐺 ∈ Grp → (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
40 simp1 1136 . . 3 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Smgrp)
412, 15dfgrp3lem 18917 . . 3 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
422, 15dfgrp2 18843 . . 3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
4340, 41, 42sylanbrc 583 . 2 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Grp)
4439, 43impbii 208 1 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  c0 4321  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Smgrpcsgrp 18605  Mndcmnd 18621  Grpcgrp 18815  invgcminusg 18816  -gcsg 18817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820
This theorem is referenced by:  dfgrp3e  18919
  Copyright terms: Public domain W3C validator