Step | Hyp | Ref
| Expression |
1 | | grpsgrp 18774 |
. . 3
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) |
2 | | dfgrp3.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
3 | 2 | grpbn0 18779 |
. . 3
⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
4 | | simpl 483 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) |
5 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
6 | 5 | adantl 482 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
7 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
8 | 7 | adantl 482 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
9 | | eqid 2736 |
. . . . . . . 8
⊢
(-g‘𝐺) = (-g‘𝐺) |
10 | 2, 9 | grpsubcl 18827 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑦(-g‘𝐺)𝑥) ∈ 𝐵) |
11 | 4, 6, 8, 10 | syl3anc 1371 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦(-g‘𝐺)𝑥) ∈ 𝐵) |
12 | | oveq1 7364 |
. . . . . . . 8
⊢ (𝑙 = (𝑦(-g‘𝐺)𝑥) → (𝑙 + 𝑥) = ((𝑦(-g‘𝐺)𝑥) + 𝑥)) |
13 | 12 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝑙 = (𝑦(-g‘𝐺)𝑥) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦)) |
14 | 13 | adantl 482 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑙 = (𝑦(-g‘𝐺)𝑥)) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦)) |
15 | | dfgrp3.p |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
16 | 2, 15, 9 | grpnpcan 18839 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦) |
17 | 4, 6, 8, 16 | syl3anc 1371 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦) |
18 | 11, 14, 17 | rspcedvd 3583 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦) |
19 | | eqid 2736 |
. . . . . . . . 9
⊢
(invg‘𝐺) = (invg‘𝐺) |
20 | 2, 19 | grpinvcl 18798 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
21 | 20 | adantrr 715 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
22 | 2, 15, 4, 21, 6 | grpcld 18761 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((invg‘𝐺)‘𝑥) + 𝑦) ∈ 𝐵) |
23 | | oveq2 7365 |
. . . . . . . 8
⊢ (𝑟 =
(((invg‘𝐺)‘𝑥) + 𝑦) → (𝑥 + 𝑟) = (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦))) |
24 | 23 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝑟 =
(((invg‘𝐺)‘𝑥) + 𝑦) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦)) = 𝑦)) |
25 | 24 | adantl 482 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑟 = (((invg‘𝐺)‘𝑥) + 𝑦)) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦)) = 𝑦)) |
26 | | eqid 2736 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
27 | 2, 15, 26, 19 | grprinv 18801 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑥 +
((invg‘𝐺)‘𝑥)) = (0g‘𝐺)) |
28 | 27 | adantrr 715 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 +
((invg‘𝐺)‘𝑥)) = (0g‘𝐺)) |
29 | 28 | oveq1d 7372 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 +
((invg‘𝐺)‘𝑥)) + 𝑦) = ((0g‘𝐺) + 𝑦)) |
30 | 2, 15 | grpass 18757 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 +
((invg‘𝐺)‘𝑥)) + 𝑦) = (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦))) |
31 | 4, 8, 21, 6, 30 | syl13anc 1372 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 +
((invg‘𝐺)‘𝑥)) + 𝑦) = (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦))) |
32 | | grpmnd 18755 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
33 | 2, 15, 26 | mndlid 18576 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → ((0g‘𝐺) + 𝑦) = 𝑦) |
34 | 32, 5, 33 | syl2an 596 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((0g‘𝐺) + 𝑦) = 𝑦) |
35 | 29, 31, 34 | 3eqtr3d 2784 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦)) = 𝑦) |
36 | 22, 25, 35 | rspcedvd 3583 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) |
37 | 18, 36 | jca 512 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) |
38 | 37 | ralrimivva 3197 |
. . 3
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) |
39 | 1, 3, 38 | 3jca 1128 |
. 2
⊢ (𝐺 ∈ Grp → (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦))) |
40 | | simp1 1136 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Smgrp) |
41 | 2, 15 | dfgrp3lem 18845 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |
42 | 2, 15 | dfgrp2 18775 |
. . 3
⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) |
43 | 40, 41, 42 | sylanbrc 583 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Grp) |
44 | 39, 43 | impbii 208 |
1
⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦))) |