![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isgrpi | Structured version Visualization version GIF version |
Description: Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.) |
Ref | Expression |
---|---|
isgrpi.b | ⊢ 𝐵 = (Base‘𝐺) |
isgrpi.p | ⊢ + = (+g‘𝐺) |
isgrpi.c | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
isgrpi.a | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
isgrpi.z | ⊢ 0 ∈ 𝐵 |
isgrpi.i | ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) |
isgrpi.n | ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) |
isgrpi.j | ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) |
Ref | Expression |
---|---|
isgrpi | ⊢ 𝐺 ∈ Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = (Base‘𝐺)) |
3 | isgrpi.p | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → + = (+g‘𝐺)) |
5 | isgrpi.c | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | |
6 | 5 | 3adant1 1129 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
7 | isgrpi.a | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
8 | 7 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
9 | isgrpi.z | . . . 4 ⊢ 0 ∈ 𝐵 | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 0 ∈ 𝐵) |
11 | isgrpi.i | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) | |
12 | 11 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
13 | isgrpi.n | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) | |
14 | 13 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) |
15 | isgrpi.j | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) | |
16 | 15 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) |
17 | 2, 4, 6, 8, 10, 12, 14, 16 | isgrpd 18989 | . 2 ⊢ (⊤ → 𝐺 ∈ Grp) |
18 | 17 | mptru 1544 | 1 ⊢ 𝐺 ∈ Grp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ⊤wtru 1538 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Grpcgrp 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 |
This theorem is referenced by: isgrpix 18995 cnaddabl 19902 cncrng 21419 cncrngOLD 21420 |
Copyright terms: Public domain | W3C validator |