| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isgrpi | Structured version Visualization version GIF version | ||
| Description: Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.) |
| Ref | Expression |
|---|---|
| isgrpi.b | ⊢ 𝐵 = (Base‘𝐺) |
| isgrpi.p | ⊢ + = (+g‘𝐺) |
| isgrpi.c | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| isgrpi.a | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| isgrpi.z | ⊢ 0 ∈ 𝐵 |
| isgrpi.i | ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) |
| isgrpi.n | ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) |
| isgrpi.j | ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) |
| Ref | Expression |
|---|---|
| isgrpi | ⊢ 𝐺 ∈ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = (Base‘𝐺)) |
| 3 | isgrpi.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → + = (+g‘𝐺)) |
| 5 | isgrpi.c | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | |
| 6 | 5 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 7 | isgrpi.a | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 9 | isgrpi.z | . . . 4 ⊢ 0 ∈ 𝐵 | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 0 ∈ 𝐵) |
| 11 | isgrpi.i | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
| 13 | isgrpi.n | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) | |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) |
| 15 | isgrpi.j | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) | |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) |
| 17 | 2, 4, 6, 8, 10, 12, 14, 16 | isgrpd 18950 | . 2 ⊢ (⊤ → 𝐺 ∈ Grp) |
| 18 | 17 | mptru 1546 | 1 ⊢ 𝐺 ∈ Grp |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 +gcplusg 17277 Grpcgrp 18925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-riota 7371 df-ov 7417 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 |
| This theorem is referenced by: isgrpix 18956 cnaddabl 19860 cncrng 21368 cncrngOLD 21369 |
| Copyright terms: Public domain | W3C validator |