MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpi Structured version   Visualization version   GIF version

Theorem isgrpi 18845
Description: Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.)
Hypotheses
Ref Expression
isgrpi.b 𝐵 = (Base‘𝐺)
isgrpi.p + = (+g𝐺)
isgrpi.c ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
isgrpi.a ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
isgrpi.z 0𝐵
isgrpi.i (𝑥𝐵 → ( 0 + 𝑥) = 𝑥)
isgrpi.n (𝑥𝐵𝑁𝐵)
isgrpi.j (𝑥𝐵 → (𝑁 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpi 𝐺 ∈ Grp
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐺,𝑦,𝑧   𝑦,𝑁   𝑥, + ,𝑦,𝑧   𝑥, 0 ,𝑦,𝑧
Allowed substitution hints:   𝑁(𝑥,𝑧)

Proof of Theorem isgrpi
StepHypRef Expression
1 isgrpi.b . . . 4 𝐵 = (Base‘𝐺)
21a1i 11 . . 3 (⊤ → 𝐵 = (Base‘𝐺))
3 isgrpi.p . . . 4 + = (+g𝐺)
43a1i 11 . . 3 (⊤ → + = (+g𝐺))
5 isgrpi.c . . . 4 ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
653adant1 1131 . . 3 ((⊤ ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
7 isgrpi.a . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
87adantl 483 . . 3 ((⊤ ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
9 isgrpi.z . . . 4 0𝐵
109a1i 11 . . 3 (⊤ → 0𝐵)
11 isgrpi.i . . . 4 (𝑥𝐵 → ( 0 + 𝑥) = 𝑥)
1211adantl 483 . . 3 ((⊤ ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
13 isgrpi.n . . . 4 (𝑥𝐵𝑁𝐵)
1413adantl 483 . . 3 ((⊤ ∧ 𝑥𝐵) → 𝑁𝐵)
15 isgrpi.j . . . 4 (𝑥𝐵 → (𝑁 + 𝑥) = 0 )
1615adantl 483 . . 3 ((⊤ ∧ 𝑥𝐵) → (𝑁 + 𝑥) = 0 )
172, 4, 6, 8, 10, 12, 14, 16isgrpd 18844 . 2 (⊤ → 𝐺 ∈ Grp)
1817mptru 1549 1 𝐺 ∈ Grp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wtru 1543  wcel 2107  cfv 6544  (class class class)co 7409  Basecbs 17144  +gcplusg 17197  Grpcgrp 18819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-riota 7365  df-ov 7412  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822
This theorem is referenced by:  isgrpix  18849  cnaddabl  19737  cncrng  20966
  Copyright terms: Public domain W3C validator