Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isgrpi | Structured version Visualization version GIF version |
Description: Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.) |
Ref | Expression |
---|---|
isgrpi.b | ⊢ 𝐵 = (Base‘𝐺) |
isgrpi.p | ⊢ + = (+g‘𝐺) |
isgrpi.c | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
isgrpi.a | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
isgrpi.z | ⊢ 0 ∈ 𝐵 |
isgrpi.i | ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) |
isgrpi.n | ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) |
isgrpi.j | ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) |
Ref | Expression |
---|---|
isgrpi | ⊢ 𝐺 ∈ Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = (Base‘𝐺)) |
3 | isgrpi.p | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → + = (+g‘𝐺)) |
5 | isgrpi.c | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | |
6 | 5 | 3adant1 1127 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
7 | isgrpi.a | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
8 | 7 | adantl 485 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
9 | isgrpi.z | . . . 4 ⊢ 0 ∈ 𝐵 | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 0 ∈ 𝐵) |
11 | isgrpi.i | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) | |
12 | 11 | adantl 485 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
13 | isgrpi.n | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) | |
14 | 13 | adantl 485 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) |
15 | isgrpi.j | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) | |
16 | 15 | adantl 485 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) |
17 | 2, 4, 6, 8, 10, 12, 14, 16 | isgrpd 18205 | . 2 ⊢ (⊤ → 𝐺 ∈ Grp) |
18 | 17 | mptru 1545 | 1 ⊢ 𝐺 ∈ Grp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ⊤wtru 1539 ∈ wcel 2111 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 +gcplusg 16636 Grpcgrp 18182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-iota 6299 df-fun 6342 df-fv 6348 df-riota 7114 df-ov 7159 df-0g 16786 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-grp 18185 |
This theorem is referenced by: isgrpix 18210 cnaddabl 19070 cncrng 20200 |
Copyright terms: Public domain | W3C validator |