| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isgrpi | Structured version Visualization version GIF version | ||
| Description: Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.) |
| Ref | Expression |
|---|---|
| isgrpi.b | ⊢ 𝐵 = (Base‘𝐺) |
| isgrpi.p | ⊢ + = (+g‘𝐺) |
| isgrpi.c | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| isgrpi.a | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| isgrpi.z | ⊢ 0 ∈ 𝐵 |
| isgrpi.i | ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) |
| isgrpi.n | ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) |
| isgrpi.j | ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) |
| Ref | Expression |
|---|---|
| isgrpi | ⊢ 𝐺 ∈ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = (Base‘𝐺)) |
| 3 | isgrpi.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → + = (+g‘𝐺)) |
| 5 | isgrpi.c | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | |
| 6 | 5 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 7 | isgrpi.a | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 9 | isgrpi.z | . . . 4 ⊢ 0 ∈ 𝐵 | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 0 ∈ 𝐵) |
| 11 | isgrpi.i | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
| 13 | isgrpi.n | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) | |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) |
| 15 | isgrpi.j | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) | |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) |
| 17 | 2, 4, 6, 8, 10, 12, 14, 16 | isgrpd 18855 | . 2 ⊢ (⊤ → 𝐺 ∈ Grp) |
| 18 | 17 | mptru 1547 | 1 ⊢ 𝐺 ∈ Grp |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Grpcgrp 18830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 |
| This theorem is referenced by: isgrpix 18861 cnaddabl 19766 cncrng 21313 cncrngOLD 21314 zsoring 28319 |
| Copyright terms: Public domain | W3C validator |