MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpi Structured version   Visualization version   GIF version

Theorem isgrpi 18990
Description: Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.)
Hypotheses
Ref Expression
isgrpi.b 𝐵 = (Base‘𝐺)
isgrpi.p + = (+g𝐺)
isgrpi.c ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
isgrpi.a ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
isgrpi.z 0𝐵
isgrpi.i (𝑥𝐵 → ( 0 + 𝑥) = 𝑥)
isgrpi.n (𝑥𝐵𝑁𝐵)
isgrpi.j (𝑥𝐵 → (𝑁 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpi 𝐺 ∈ Grp
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐺,𝑦,𝑧   𝑦,𝑁   𝑥, + ,𝑦,𝑧   𝑥, 0 ,𝑦,𝑧
Allowed substitution hints:   𝑁(𝑥,𝑧)

Proof of Theorem isgrpi
StepHypRef Expression
1 isgrpi.b . . . 4 𝐵 = (Base‘𝐺)
21a1i 11 . . 3 (⊤ → 𝐵 = (Base‘𝐺))
3 isgrpi.p . . . 4 + = (+g𝐺)
43a1i 11 . . 3 (⊤ → + = (+g𝐺))
5 isgrpi.c . . . 4 ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
653adant1 1129 . . 3 ((⊤ ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
7 isgrpi.a . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
87adantl 481 . . 3 ((⊤ ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
9 isgrpi.z . . . 4 0𝐵
109a1i 11 . . 3 (⊤ → 0𝐵)
11 isgrpi.i . . . 4 (𝑥𝐵 → ( 0 + 𝑥) = 𝑥)
1211adantl 481 . . 3 ((⊤ ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
13 isgrpi.n . . . 4 (𝑥𝐵𝑁𝐵)
1413adantl 481 . . 3 ((⊤ ∧ 𝑥𝐵) → 𝑁𝐵)
15 isgrpi.j . . . 4 (𝑥𝐵 → (𝑁 + 𝑥) = 0 )
1615adantl 481 . . 3 ((⊤ ∧ 𝑥𝐵) → (𝑁 + 𝑥) = 0 )
172, 4, 6, 8, 10, 12, 14, 16isgrpd 18989 . 2 (⊤ → 𝐺 ∈ Grp)
1817mptru 1544 1 𝐺 ∈ Grp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wtru 1538  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Grpcgrp 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967
This theorem is referenced by:  isgrpix  18995  cnaddabl  19902  cncrng  21419  cncrngOLD  21420
  Copyright terms: Public domain W3C validator