Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchi3 Structured version   Visualization version   GIF version

Theorem isarchi3 33114
Description: This is the usual definition of the Archimedean property for an ordered group. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
isarchi3.b 𝐵 = (Base‘𝑊)
isarchi3.0 0 = (0g𝑊)
isarchi3.i < = (lt‘𝑊)
isarchi3.x · = (.g𝑊)
Assertion
Ref Expression
isarchi3 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑛,𝑊,𝑥,𝑦   < ,𝑛   · ,𝑛   0 ,𝑛
Allowed substitution hints:   < (𝑥,𝑦)   · (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isarchi3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isogrp 32989 . . . . 5 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
21simprbi 496 . . . 4 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
3 omndtos 32992 . . . 4 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
42, 3syl 17 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Toset)
5 grpmnd 18848 . . . . 5 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
65adantr 480 . . . 4 ((𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd) → 𝑊 ∈ Mnd)
71, 6sylbi 217 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Mnd)
8 isarchi3.b . . . 4 𝐵 = (Base‘𝑊)
9 isarchi3.0 . . . 4 0 = (0g𝑊)
10 isarchi3.x . . . 4 · = (.g𝑊)
11 eqid 2729 . . . 4 (le‘𝑊) = (le‘𝑊)
12 isarchi3.i . . . 4 < = (lt‘𝑊)
138, 9, 10, 11, 12isarchi2 33112 . . 3 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))))
144, 7, 13syl2anc 584 . 2 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))))
15 simpr 484 . . . . . . . . . . 11 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1615adantr 480 . . . . . . . . . 10 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑛 ∈ ℕ)
1716peano2nnd 12179 . . . . . . . . 9 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 + 1) ∈ ℕ)
18 simp-4l 782 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ oGrp)
1918adantr 480 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ oGrp)
20 ogrpgrp 32990 . . . . . . . . . . . . 13 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
218, 9grpidcl 18873 . . . . . . . . . . . . 13 (𝑊 ∈ Grp → 0𝐵)
2219, 20, 213syl 18 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0𝐵)
23 simp-4r 783 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑥𝐵)
2423adantr 480 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑥𝐵)
2520ad4antr 732 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Grp)
2615nnzd 12532 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
278, 10mulgcl 18999 . . . . . . . . . . . . . 14 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑥𝐵) → (𝑛 · 𝑥) ∈ 𝐵)
2825, 26, 23, 27syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵)
2928adantr 480 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) ∈ 𝐵)
30 simpllr 775 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0 < 𝑥)
31 eqid 2729 . . . . . . . . . . . . 13 (+g𝑊) = (+g𝑊)
328, 12, 31ogrpaddlt 33004 . . . . . . . . . . . 12 ((𝑊 ∈ oGrp ∧ ( 0𝐵𝑥𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) ∧ 0 < 𝑥) → ( 0 (+g𝑊)(𝑛 · 𝑥)) < (𝑥(+g𝑊)(𝑛 · 𝑥)))
3319, 22, 24, 29, 30, 32syl131anc 1385 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g𝑊)(𝑛 · 𝑥)) < (𝑥(+g𝑊)(𝑛 · 𝑥)))
3419, 20syl 17 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ Grp)
358, 31, 9grplid 18875 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ (𝑛 · 𝑥) ∈ 𝐵) → ( 0 (+g𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥))
3634, 29, 35syl2anc 584 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥))
37 nncn 12170 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
38 ax-1cn 11102 . . . . . . . . . . . . . . 15 1 ∈ ℂ
39 addcom 11336 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 + 1) = (1 + 𝑛))
4037, 38, 39sylancl 586 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 + 1) = (1 + 𝑛))
4140oveq1d 7384 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥))
4216, 41syl 17 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥))
43 grpsgrp 18868 . . . . . . . . . . . . . 14 (𝑊 ∈ Grp → 𝑊 ∈ Smgrp)
4419, 20, 433syl 18 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ Smgrp)
45 1nn 12173 . . . . . . . . . . . . . 14 1 ∈ ℕ
4645a1i 11 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 1 ∈ ℕ)
478, 10, 31mulgnndir 19011 . . . . . . . . . . . . 13 ((𝑊 ∈ Smgrp ∧ (1 ∈ ℕ ∧ 𝑛 ∈ ℕ ∧ 𝑥𝐵)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)))
4844, 46, 16, 24, 47syl13anc 1374 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)))
498, 10mulg1 18989 . . . . . . . . . . . . . 14 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
5024, 49syl 17 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (1 · 𝑥) = 𝑥)
5150oveq1d 7384 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)) = (𝑥(+g𝑊)(𝑛 · 𝑥)))
5242, 48, 513eqtrrd 2769 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑥(+g𝑊)(𝑛 · 𝑥)) = ((𝑛 + 1) · 𝑥))
5333, 36, 523brtr3d 5133 . . . . . . . . . 10 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥))
54 tospos 18355 . . . . . . . . . . . . 13 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
5518, 4, 543syl 18 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Poset)
56 simpllr 775 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑦𝐵)
5726peano2zd 12617 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℤ)
588, 10mulgcl 18999 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝑛 + 1) ∈ ℤ ∧ 𝑥𝐵) → ((𝑛 + 1) · 𝑥) ∈ 𝐵)
5925, 57, 23, 58syl3anc 1373 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) · 𝑥) ∈ 𝐵)
608, 11, 12plelttr 18279 . . . . . . . . . . . 12 ((𝑊 ∈ Poset ∧ (𝑦𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑥) ∈ 𝐵)) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)))
6155, 56, 28, 59, 60syl13anc 1374 . . . . . . . . . . 11 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)))
6261impl 455 . . . . . . . . . 10 (((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))
6353, 62mpdan 687 . . . . . . . . 9 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))
64 oveq1 7376 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑥) = ((𝑛 + 1) · 𝑥))
6564breq2d 5114 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < ((𝑛 + 1) · 𝑥)))
6665rspcev 3585 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ ∧ 𝑦 < ((𝑛 + 1) · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
6717, 63, 66syl2anc 584 . . . . . . . 8 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
6867r19.29an 3137 . . . . . . 7 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
69 oveq1 7376 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚 · 𝑥) = (𝑛 · 𝑥))
7069breq2d 5114 . . . . . . . 8 (𝑚 = 𝑛 → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < (𝑛 · 𝑥)))
7170cbvrexvw 3214 . . . . . . 7 (∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))
7268, 71sylib 218 . . . . . 6 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))
7311, 12pltle 18268 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ 𝑦𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7418, 56, 28, 73syl3anc 1373 . . . . . . . 8 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7574reximdva 3146 . . . . . . 7 ((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7675imp 406 . . . . . 6 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))
7772, 76impbida 800 . . . . 5 ((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))
7877pm5.74da 803 . . . 4 (((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
7978ralbidva 3154 . . 3 ((𝑊 ∈ oGrp ∧ 𝑥𝐵) → (∀𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
8079ralbidva 3154 . 2 (𝑊 ∈ oGrp → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
8114, 80bitrd 279 1 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  1c1 11045   + caddc 11047  cn 12162  cz 12505  Basecbs 17155  +gcplusg 17196  lecple 17203  0gc0g 17378  Posetcpo 18244  ltcplt 18245  Tosetctos 18351  Smgrpcsgrp 18621  Mndcmnd 18637  Grpcgrp 18841  .gcmg 18975  oMndcomnd 32984  oGrpcogrp 32985  Archicarchi 33104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943  df-0g 17380  df-proset 18231  df-poset 18250  df-plt 18265  df-toset 18352  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-mulg 18976  df-omnd 32986  df-ogrp 32987  df-inftm 33105  df-archi 33106
This theorem is referenced by:  archiexdiv  33117  isarchiofld  33268
  Copyright terms: Public domain W3C validator