Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchi3 Structured version   Visualization version   GIF version

Theorem isarchi3 32320
Description: This is the usual definition of the Archimedean property for an ordered group. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
isarchi3.b 𝐵 = (Base‘𝑊)
isarchi3.0 0 = (0g𝑊)
isarchi3.i < = (lt‘𝑊)
isarchi3.x · = (.g𝑊)
Assertion
Ref Expression
isarchi3 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑛,𝑊,𝑥,𝑦   < ,𝑛   · ,𝑛   0 ,𝑛
Allowed substitution hints:   < (𝑥,𝑦)   · (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isarchi3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isogrp 32207 . . . . 5 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
21simprbi 497 . . . 4 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
3 omndtos 32210 . . . 4 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
42, 3syl 17 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Toset)
5 grpmnd 18822 . . . . 5 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
65adantr 481 . . . 4 ((𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd) → 𝑊 ∈ Mnd)
71, 6sylbi 216 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Mnd)
8 isarchi3.b . . . 4 𝐵 = (Base‘𝑊)
9 isarchi3.0 . . . 4 0 = (0g𝑊)
10 isarchi3.x . . . 4 · = (.g𝑊)
11 eqid 2732 . . . 4 (le‘𝑊) = (le‘𝑊)
12 isarchi3.i . . . 4 < = (lt‘𝑊)
138, 9, 10, 11, 12isarchi2 32318 . . 3 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))))
144, 7, 13syl2anc 584 . 2 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))))
15 simpr 485 . . . . . . . . . . 11 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1615adantr 481 . . . . . . . . . 10 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑛 ∈ ℕ)
1716peano2nnd 12225 . . . . . . . . 9 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 + 1) ∈ ℕ)
18 simp-4l 781 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ oGrp)
1918adantr 481 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ oGrp)
20 ogrpgrp 32208 . . . . . . . . . . . . 13 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
218, 9grpidcl 18846 . . . . . . . . . . . . 13 (𝑊 ∈ Grp → 0𝐵)
2219, 20, 213syl 18 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0𝐵)
23 simp-4r 782 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑥𝐵)
2423adantr 481 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑥𝐵)
2520ad4antr 730 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Grp)
2615nnzd 12581 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
278, 10mulgcl 18965 . . . . . . . . . . . . . 14 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑥𝐵) → (𝑛 · 𝑥) ∈ 𝐵)
2825, 26, 23, 27syl3anc 1371 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵)
2928adantr 481 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) ∈ 𝐵)
30 simpllr 774 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0 < 𝑥)
31 eqid 2732 . . . . . . . . . . . . 13 (+g𝑊) = (+g𝑊)
328, 12, 31ogrpaddlt 32222 . . . . . . . . . . . 12 ((𝑊 ∈ oGrp ∧ ( 0𝐵𝑥𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) ∧ 0 < 𝑥) → ( 0 (+g𝑊)(𝑛 · 𝑥)) < (𝑥(+g𝑊)(𝑛 · 𝑥)))
3319, 22, 24, 29, 30, 32syl131anc 1383 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g𝑊)(𝑛 · 𝑥)) < (𝑥(+g𝑊)(𝑛 · 𝑥)))
3419, 20syl 17 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ Grp)
358, 31, 9grplid 18848 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ (𝑛 · 𝑥) ∈ 𝐵) → ( 0 (+g𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥))
3634, 29, 35syl2anc 584 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥))
37 nncn 12216 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
38 ax-1cn 11164 . . . . . . . . . . . . . . 15 1 ∈ ℂ
39 addcom 11396 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 + 1) = (1 + 𝑛))
4037, 38, 39sylancl 586 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 + 1) = (1 + 𝑛))
4140oveq1d 7420 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥))
4216, 41syl 17 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥))
43 grpsgrp 18842 . . . . . . . . . . . . . 14 (𝑊 ∈ Grp → 𝑊 ∈ Smgrp)
4419, 20, 433syl 18 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ Smgrp)
45 1nn 12219 . . . . . . . . . . . . . 14 1 ∈ ℕ
4645a1i 11 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 1 ∈ ℕ)
478, 10, 31mulgnndir 18977 . . . . . . . . . . . . 13 ((𝑊 ∈ Smgrp ∧ (1 ∈ ℕ ∧ 𝑛 ∈ ℕ ∧ 𝑥𝐵)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)))
4844, 46, 16, 24, 47syl13anc 1372 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)))
498, 10mulg1 18955 . . . . . . . . . . . . . 14 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
5024, 49syl 17 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (1 · 𝑥) = 𝑥)
5150oveq1d 7420 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)) = (𝑥(+g𝑊)(𝑛 · 𝑥)))
5242, 48, 513eqtrrd 2777 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑥(+g𝑊)(𝑛 · 𝑥)) = ((𝑛 + 1) · 𝑥))
5333, 36, 523brtr3d 5178 . . . . . . . . . 10 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥))
54 tospos 18369 . . . . . . . . . . . . 13 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
5518, 4, 543syl 18 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Poset)
56 simpllr 774 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑦𝐵)
5726peano2zd 12665 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℤ)
588, 10mulgcl 18965 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝑛 + 1) ∈ ℤ ∧ 𝑥𝐵) → ((𝑛 + 1) · 𝑥) ∈ 𝐵)
5925, 57, 23, 58syl3anc 1371 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) · 𝑥) ∈ 𝐵)
608, 11, 12plelttr 18293 . . . . . . . . . . . 12 ((𝑊 ∈ Poset ∧ (𝑦𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑥) ∈ 𝐵)) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)))
6155, 56, 28, 59, 60syl13anc 1372 . . . . . . . . . . 11 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)))
6261impl 456 . . . . . . . . . 10 (((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))
6353, 62mpdan 685 . . . . . . . . 9 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))
64 oveq1 7412 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑥) = ((𝑛 + 1) · 𝑥))
6564breq2d 5159 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < ((𝑛 + 1) · 𝑥)))
6665rspcev 3612 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ ∧ 𝑦 < ((𝑛 + 1) · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
6717, 63, 66syl2anc 584 . . . . . . . 8 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
6867r19.29an 3158 . . . . . . 7 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
69 oveq1 7412 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚 · 𝑥) = (𝑛 · 𝑥))
7069breq2d 5159 . . . . . . . 8 (𝑚 = 𝑛 → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < (𝑛 · 𝑥)))
7170cbvrexvw 3235 . . . . . . 7 (∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))
7268, 71sylib 217 . . . . . 6 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))
7311, 12pltle 18282 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ 𝑦𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7418, 56, 28, 73syl3anc 1371 . . . . . . . 8 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7574reximdva 3168 . . . . . . 7 ((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7675imp 407 . . . . . 6 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))
7772, 76impbida 799 . . . . 5 ((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))
7877pm5.74da 802 . . . 4 (((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
7978ralbidva 3175 . . 3 ((𝑊 ∈ oGrp ∧ 𝑥𝐵) → (∀𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
8079ralbidva 3175 . 2 (𝑊 ∈ oGrp → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
8114, 80bitrd 278 1 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070   class class class wbr 5147  cfv 6540  (class class class)co 7405  cc 11104  1c1 11107   + caddc 11109  cn 12208  cz 12554  Basecbs 17140  +gcplusg 17193  lecple 17200  0gc0g 17381  Posetcpo 18256  ltcplt 18257  Tosetctos 18365  Smgrpcsgrp 18605  Mndcmnd 18621  Grpcgrp 18815  .gcmg 18944  oMndcomnd 32202  oGrpcogrp 32203  Archicarchi 32310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-seq 13963  df-0g 17383  df-proset 18244  df-poset 18262  df-plt 18279  df-toset 18366  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-mulg 18945  df-omnd 32204  df-ogrp 32205  df-inftm 32311  df-archi 32312
This theorem is referenced by:  archiexdiv  32323  isarchiofld  32423
  Copyright terms: Public domain W3C validator