Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchi3 Structured version   Visualization version   GIF version

Theorem isarchi3 32023
Description: This is the usual definition of the Archimedean property for an ordered group. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
isarchi3.b 𝐵 = (Base‘𝑊)
isarchi3.0 0 = (0g𝑊)
isarchi3.i < = (lt‘𝑊)
isarchi3.x · = (.g𝑊)
Assertion
Ref Expression
isarchi3 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑛,𝑊,𝑥,𝑦   < ,𝑛   · ,𝑛   0 ,𝑛
Allowed substitution hints:   < (𝑥,𝑦)   · (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isarchi3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isogrp 31910 . . . . 5 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
21simprbi 497 . . . 4 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
3 omndtos 31913 . . . 4 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
42, 3syl 17 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Toset)
5 grpmnd 18755 . . . . 5 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
65adantr 481 . . . 4 ((𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd) → 𝑊 ∈ Mnd)
71, 6sylbi 216 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Mnd)
8 isarchi3.b . . . 4 𝐵 = (Base‘𝑊)
9 isarchi3.0 . . . 4 0 = (0g𝑊)
10 isarchi3.x . . . 4 · = (.g𝑊)
11 eqid 2736 . . . 4 (le‘𝑊) = (le‘𝑊)
12 isarchi3.i . . . 4 < = (lt‘𝑊)
138, 9, 10, 11, 12isarchi2 32021 . . 3 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))))
144, 7, 13syl2anc 584 . 2 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))))
15 simpr 485 . . . . . . . . . . 11 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1615adantr 481 . . . . . . . . . 10 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑛 ∈ ℕ)
1716peano2nnd 12170 . . . . . . . . 9 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 + 1) ∈ ℕ)
18 simp-4l 781 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ oGrp)
1918adantr 481 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ oGrp)
20 ogrpgrp 31911 . . . . . . . . . . . . 13 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
218, 9grpidcl 18778 . . . . . . . . . . . . 13 (𝑊 ∈ Grp → 0𝐵)
2219, 20, 213syl 18 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0𝐵)
23 simp-4r 782 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑥𝐵)
2423adantr 481 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑥𝐵)
2520ad4antr 730 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Grp)
2615nnzd 12526 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
278, 10mulgcl 18893 . . . . . . . . . . . . . 14 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑥𝐵) → (𝑛 · 𝑥) ∈ 𝐵)
2825, 26, 23, 27syl3anc 1371 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵)
2928adantr 481 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) ∈ 𝐵)
30 simpllr 774 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0 < 𝑥)
31 eqid 2736 . . . . . . . . . . . . 13 (+g𝑊) = (+g𝑊)
328, 12, 31ogrpaddlt 31925 . . . . . . . . . . . 12 ((𝑊 ∈ oGrp ∧ ( 0𝐵𝑥𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) ∧ 0 < 𝑥) → ( 0 (+g𝑊)(𝑛 · 𝑥)) < (𝑥(+g𝑊)(𝑛 · 𝑥)))
3319, 22, 24, 29, 30, 32syl131anc 1383 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g𝑊)(𝑛 · 𝑥)) < (𝑥(+g𝑊)(𝑛 · 𝑥)))
3419, 20syl 17 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ Grp)
358, 31, 9grplid 18780 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ (𝑛 · 𝑥) ∈ 𝐵) → ( 0 (+g𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥))
3634, 29, 35syl2anc 584 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥))
37 nncn 12161 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
38 ax-1cn 11109 . . . . . . . . . . . . . . 15 1 ∈ ℂ
39 addcom 11341 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 + 1) = (1 + 𝑛))
4037, 38, 39sylancl 586 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 + 1) = (1 + 𝑛))
4140oveq1d 7372 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥))
4216, 41syl 17 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥))
43 grpsgrp 18774 . . . . . . . . . . . . . 14 (𝑊 ∈ Grp → 𝑊 ∈ Smgrp)
4419, 20, 433syl 18 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ Smgrp)
45 1nn 12164 . . . . . . . . . . . . . 14 1 ∈ ℕ
4645a1i 11 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 1 ∈ ℕ)
478, 10, 31mulgnndir 18905 . . . . . . . . . . . . 13 ((𝑊 ∈ Smgrp ∧ (1 ∈ ℕ ∧ 𝑛 ∈ ℕ ∧ 𝑥𝐵)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)))
4844, 46, 16, 24, 47syl13anc 1372 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)))
498, 10mulg1 18883 . . . . . . . . . . . . . 14 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
5024, 49syl 17 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (1 · 𝑥) = 𝑥)
5150oveq1d 7372 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)) = (𝑥(+g𝑊)(𝑛 · 𝑥)))
5242, 48, 513eqtrrd 2781 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑥(+g𝑊)(𝑛 · 𝑥)) = ((𝑛 + 1) · 𝑥))
5333, 36, 523brtr3d 5136 . . . . . . . . . 10 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥))
54 tospos 18309 . . . . . . . . . . . . 13 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
5518, 4, 543syl 18 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Poset)
56 simpllr 774 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑦𝐵)
5726peano2zd 12610 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℤ)
588, 10mulgcl 18893 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝑛 + 1) ∈ ℤ ∧ 𝑥𝐵) → ((𝑛 + 1) · 𝑥) ∈ 𝐵)
5925, 57, 23, 58syl3anc 1371 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) · 𝑥) ∈ 𝐵)
608, 11, 12plelttr 18233 . . . . . . . . . . . 12 ((𝑊 ∈ Poset ∧ (𝑦𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑥) ∈ 𝐵)) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)))
6155, 56, 28, 59, 60syl13anc 1372 . . . . . . . . . . 11 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)))
6261impl 456 . . . . . . . . . 10 (((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))
6353, 62mpdan 685 . . . . . . . . 9 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))
64 oveq1 7364 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑥) = ((𝑛 + 1) · 𝑥))
6564breq2d 5117 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < ((𝑛 + 1) · 𝑥)))
6665rspcev 3581 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ ∧ 𝑦 < ((𝑛 + 1) · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
6717, 63, 66syl2anc 584 . . . . . . . 8 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
6867r19.29an 3155 . . . . . . 7 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
69 oveq1 7364 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚 · 𝑥) = (𝑛 · 𝑥))
7069breq2d 5117 . . . . . . . 8 (𝑚 = 𝑛 → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < (𝑛 · 𝑥)))
7170cbvrexvw 3226 . . . . . . 7 (∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))
7268, 71sylib 217 . . . . . 6 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))
7311, 12pltle 18222 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ 𝑦𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7418, 56, 28, 73syl3anc 1371 . . . . . . . 8 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7574reximdva 3165 . . . . . . 7 ((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7675imp 407 . . . . . 6 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))
7772, 76impbida 799 . . . . 5 ((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))
7877pm5.74da 802 . . . 4 (((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
7978ralbidva 3172 . . 3 ((𝑊 ∈ oGrp ∧ 𝑥𝐵) → (∀𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
8079ralbidva 3172 . 2 (𝑊 ∈ oGrp → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
8114, 80bitrd 278 1 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054  cn 12153  cz 12499  Basecbs 17083  +gcplusg 17133  lecple 17140  0gc0g 17321  Posetcpo 18196  ltcplt 18197  Tosetctos 18305  Smgrpcsgrp 18545  Mndcmnd 18556  Grpcgrp 18748  .gcmg 18872  oMndcomnd 31905  oGrpcogrp 31906  Archicarchi 32013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-toset 18306  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-mulg 18873  df-omnd 31907  df-ogrp 31908  df-inftm 32014  df-archi 32015
This theorem is referenced by:  archiexdiv  32026  isarchiofld  32112
  Copyright terms: Public domain W3C validator