Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchi3 Structured version   Visualization version   GIF version

Theorem isarchi3 30459
Description: This is the usual definition of the Archimedean property for an ordered group. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
isarchi3.b 𝐵 = (Base‘𝑊)
isarchi3.0 0 = (0g𝑊)
isarchi3.i < = (lt‘𝑊)
isarchi3.x · = (.g𝑊)
Assertion
Ref Expression
isarchi3 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑛,𝑊,𝑥,𝑦   < ,𝑛   · ,𝑛   0 ,𝑛
Allowed substitution hints:   < (𝑥,𝑦)   · (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isarchi3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isogrp 30368 . . . . 5 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
21simprbi 497 . . . 4 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
3 omndtos 30371 . . . 4 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
42, 3syl 17 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Toset)
5 grpmnd 17873 . . . . 5 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
65adantr 481 . . . 4 ((𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd) → 𝑊 ∈ Mnd)
71, 6sylbi 218 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Mnd)
8 isarchi3.b . . . 4 𝐵 = (Base‘𝑊)
9 isarchi3.0 . . . 4 0 = (0g𝑊)
10 isarchi3.x . . . 4 · = (.g𝑊)
11 eqid 2795 . . . 4 (le‘𝑊) = (le‘𝑊)
12 isarchi3.i . . . 4 < = (lt‘𝑊)
138, 9, 10, 11, 12isarchi2 30457 . . 3 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))))
144, 7, 13syl2anc 584 . 2 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))))
15 simpr 485 . . . . . . . . . . 11 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1615adantr 481 . . . . . . . . . 10 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑛 ∈ ℕ)
1716peano2nnd 11508 . . . . . . . . 9 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 + 1) ∈ ℕ)
18 simp-4l 779 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ oGrp)
1918adantr 481 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ oGrp)
20 ogrpgrp 30369 . . . . . . . . . . . . 13 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
218, 9grpidcl 17894 . . . . . . . . . . . . 13 (𝑊 ∈ Grp → 0𝐵)
2219, 20, 213syl 18 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0𝐵)
23 simp-4r 780 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑥𝐵)
2423adantr 481 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑥𝐵)
2520ad4antr 728 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Grp)
2615nnzd 11940 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
278, 10mulgcl 18005 . . . . . . . . . . . . . 14 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑥𝐵) → (𝑛 · 𝑥) ∈ 𝐵)
2825, 26, 23, 27syl3anc 1364 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵)
2928adantr 481 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) ∈ 𝐵)
30 simpllr 772 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0 < 𝑥)
31 eqid 2795 . . . . . . . . . . . . 13 (+g𝑊) = (+g𝑊)
328, 12, 31ogrpaddlt 30383 . . . . . . . . . . . 12 ((𝑊 ∈ oGrp ∧ ( 0𝐵𝑥𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) ∧ 0 < 𝑥) → ( 0 (+g𝑊)(𝑛 · 𝑥)) < (𝑥(+g𝑊)(𝑛 · 𝑥)))
3319, 22, 24, 29, 30, 32syl131anc 1376 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g𝑊)(𝑛 · 𝑥)) < (𝑥(+g𝑊)(𝑛 · 𝑥)))
3419, 20syl 17 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ Grp)
358, 31, 9grplid 17896 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ (𝑛 · 𝑥) ∈ 𝐵) → ( 0 (+g𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥))
3634, 29, 35syl2anc 584 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥))
37 nncn 11499 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
38 ax-1cn 10446 . . . . . . . . . . . . . . 15 1 ∈ ℂ
39 addcom 10678 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 + 1) = (1 + 𝑛))
4037, 38, 39sylancl 586 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 + 1) = (1 + 𝑛))
4140oveq1d 7036 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥))
4216, 41syl 17 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥))
43 grpsgrp 17890 . . . . . . . . . . . . . 14 (𝑊 ∈ Grp → 𝑊 ∈ SGrp)
4419, 20, 433syl 18 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ SGrp)
45 1nn 11502 . . . . . . . . . . . . . 14 1 ∈ ℕ
4645a1i 11 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 1 ∈ ℕ)
478, 10, 31mulgnndir 18015 . . . . . . . . . . . . 13 ((𝑊 ∈ SGrp ∧ (1 ∈ ℕ ∧ 𝑛 ∈ ℕ ∧ 𝑥𝐵)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)))
4844, 46, 16, 24, 47syl13anc 1365 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)))
498, 10mulg1 17995 . . . . . . . . . . . . . 14 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
5024, 49syl 17 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (1 · 𝑥) = 𝑥)
5150oveq1d 7036 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)) = (𝑥(+g𝑊)(𝑛 · 𝑥)))
5242, 48, 513eqtrrd 2836 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑥(+g𝑊)(𝑛 · 𝑥)) = ((𝑛 + 1) · 𝑥))
5333, 36, 523brtr3d 4997 . . . . . . . . . 10 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥))
54 tospos 30324 . . . . . . . . . . . . 13 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
5518, 4, 543syl 18 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Poset)
56 simpllr 772 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑦𝐵)
5726peano2zd 11944 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℤ)
588, 10mulgcl 18005 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝑛 + 1) ∈ ℤ ∧ 𝑥𝐵) → ((𝑛 + 1) · 𝑥) ∈ 𝐵)
5925, 57, 23, 58syl3anc 1364 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) · 𝑥) ∈ 𝐵)
608, 11, 12plelttr 17416 . . . . . . . . . . . 12 ((𝑊 ∈ Poset ∧ (𝑦𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑥) ∈ 𝐵)) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)))
6155, 56, 28, 59, 60syl13anc 1365 . . . . . . . . . . 11 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)))
6261impl 456 . . . . . . . . . 10 (((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))
6353, 62mpdan 683 . . . . . . . . 9 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))
64 oveq1 7028 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑥) = ((𝑛 + 1) · 𝑥))
6564breq2d 4978 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < ((𝑛 + 1) · 𝑥)))
6665rspcev 3559 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ ∧ 𝑦 < ((𝑛 + 1) · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
6717, 63, 66syl2anc 584 . . . . . . . 8 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
6867r19.29an 3251 . . . . . . 7 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
69 oveq1 7028 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚 · 𝑥) = (𝑛 · 𝑥))
7069breq2d 4978 . . . . . . . 8 (𝑚 = 𝑛 → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < (𝑛 · 𝑥)))
7170cbvrexv 3404 . . . . . . 7 (∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))
7268, 71sylib 219 . . . . . 6 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))
7311, 12pltle 17405 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ 𝑦𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7418, 56, 28, 73syl3anc 1364 . . . . . . . 8 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7574reximdva 3237 . . . . . . 7 ((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7675imp 407 . . . . . 6 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))
7772, 76impbida 797 . . . . 5 ((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))
7877pm5.74da 800 . . . 4 (((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
7978ralbidva 3163 . . 3 ((𝑊 ∈ oGrp ∧ 𝑥𝐵) → (∀𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
8079ralbidva 3163 . 2 (𝑊 ∈ oGrp → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
8114, 80bitrd 280 1 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105  wrex 3106   class class class wbr 4966  cfv 6230  (class class class)co 7021  cc 10386  1c1 10389   + caddc 10391  cn 11491  cz 11834  Basecbs 16317  +gcplusg 16399  lecple 16406  0gc0g 16547  Posetcpo 17384  ltcplt 17385  Tosetctos 17477  SGrpcsgrp 17727  Mndcmnd 17738  Grpcgrp 17866  .gcmg 17986  oMndcomnd 30363  oGrpcogrp 30364  Archicarchi 30449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-n0 11751  df-z 11835  df-uz 12099  df-fz 12748  df-seq 13225  df-0g 16549  df-proset 17372  df-poset 17390  df-plt 17402  df-toset 17478  df-mgm 17686  df-sgrp 17728  df-mnd 17739  df-grp 17869  df-minusg 17870  df-mulg 17987  df-omnd 30365  df-ogrp 30366  df-inftm 30450  df-archi 30451
This theorem is referenced by:  archiexdiv  30462  isarchiofld  30549
  Copyright terms: Public domain W3C validator