| Step | Hyp | Ref
| Expression |
| 1 | | isogrp 33079 |
. . . . 5
⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) |
| 2 | 1 | simprbi 496 |
. . . 4
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
| 3 | | omndtos 33082 |
. . . 4
⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) |
| 4 | 2, 3 | syl 17 |
. . 3
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Toset) |
| 5 | | grpmnd 18958 |
. . . . 5
⊢ (𝑊 ∈ Grp → 𝑊 ∈ Mnd) |
| 6 | 5 | adantr 480 |
. . . 4
⊢ ((𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd) → 𝑊 ∈ Mnd) |
| 7 | 1, 6 | sylbi 217 |
. . 3
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Mnd) |
| 8 | | isarchi3.b |
. . . 4
⊢ 𝐵 = (Base‘𝑊) |
| 9 | | isarchi3.0 |
. . . 4
⊢ 0 =
(0g‘𝑊) |
| 10 | | isarchi3.x |
. . . 4
⊢ · =
(.g‘𝑊) |
| 11 | | eqid 2737 |
. . . 4
⊢
(le‘𝑊) =
(le‘𝑊) |
| 12 | | isarchi3.i |
. . . 4
⊢ < =
(lt‘𝑊) |
| 13 | 8, 9, 10, 11, 12 | isarchi2 33192 |
. . 3
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)))) |
| 14 | 4, 7, 13 | syl2anc 584 |
. 2
⊢ (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)))) |
| 15 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 16 | 15 | adantr 480 |
. . . . . . . . . 10
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑛 ∈ ℕ) |
| 17 | 16 | peano2nnd 12283 |
. . . . . . . . 9
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 + 1) ∈ ℕ) |
| 18 | | simp-4l 783 |
. . . . . . . . . . . . 13
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ oGrp) |
| 19 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ oGrp) |
| 20 | | ogrpgrp 33080 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) |
| 21 | 8, 9 | grpidcl 18983 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Grp → 0 ∈ 𝐵) |
| 22 | 19, 20, 21 | 3syl 18 |
. . . . . . . . . . . 12
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0 ∈ 𝐵) |
| 23 | | simp-4r 784 |
. . . . . . . . . . . . 13
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ 𝐵) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑥 ∈ 𝐵) |
| 25 | 20 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Grp) |
| 26 | 15 | nnzd 12640 |
. . . . . . . . . . . . . 14
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
| 27 | 8, 10 | mulgcl 19109 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝑛 · 𝑥) ∈ 𝐵) |
| 28 | 25, 26, 23, 27 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵) |
| 29 | 28 | adantr 480 |
. . . . . . . . . . . 12
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) ∈ 𝐵) |
| 30 | | simpllr 776 |
. . . . . . . . . . . 12
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0 < 𝑥) |
| 31 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 32 | 8, 12, 31 | ogrpaddlt 33094 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ oGrp ∧ ( 0 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) ∧ 0 < 𝑥) → ( 0 (+g‘𝑊)(𝑛 · 𝑥)) < (𝑥(+g‘𝑊)(𝑛 · 𝑥))) |
| 33 | 19, 22, 24, 29, 30, 32 | syl131anc 1385 |
. . . . . . . . . . 11
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g‘𝑊)(𝑛 · 𝑥)) < (𝑥(+g‘𝑊)(𝑛 · 𝑥))) |
| 34 | 19, 20 | syl 17 |
. . . . . . . . . . . 12
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ Grp) |
| 35 | 8, 31, 9 | grplid 18985 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Grp ∧ (𝑛 · 𝑥) ∈ 𝐵) → ( 0 (+g‘𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥)) |
| 36 | 34, 29, 35 | syl2anc 584 |
. . . . . . . . . . 11
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g‘𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥)) |
| 37 | | nncn 12274 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
| 38 | | ax-1cn 11213 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
| 39 | | addcom 11447 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑛 + 1) =
(1 + 𝑛)) |
| 40 | 37, 38, 39 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) = (1 + 𝑛)) |
| 41 | 40 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥)) |
| 42 | 16, 41 | syl 17 |
. . . . . . . . . . . 12
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥)) |
| 43 | | grpsgrp 18978 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ Grp → 𝑊 ∈ Smgrp) |
| 44 | 19, 20, 43 | 3syl 18 |
. . . . . . . . . . . . 13
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ Smgrp) |
| 45 | | 1nn 12277 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ |
| 46 | 45 | a1i 11 |
. . . . . . . . . . . . 13
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 1 ∈ ℕ) |
| 47 | 8, 10, 31 | mulgnndir 19121 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Smgrp ∧ (1 ∈
ℕ ∧ 𝑛 ∈
ℕ ∧ 𝑥 ∈
𝐵)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g‘𝑊)(𝑛 · 𝑥))) |
| 48 | 44, 46, 16, 24, 47 | syl13anc 1374 |
. . . . . . . . . . . 12
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g‘𝑊)(𝑛 · 𝑥))) |
| 49 | 8, 10 | mulg1 19099 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐵 → (1 · 𝑥) = 𝑥) |
| 50 | 24, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (1 · 𝑥) = 𝑥) |
| 51 | 50 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 · 𝑥)(+g‘𝑊)(𝑛 · 𝑥)) = (𝑥(+g‘𝑊)(𝑛 · 𝑥))) |
| 52 | 42, 48, 51 | 3eqtrrd 2782 |
. . . . . . . . . . 11
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑥(+g‘𝑊)(𝑛 · 𝑥)) = ((𝑛 + 1) · 𝑥)) |
| 53 | 33, 36, 52 | 3brtr3d 5174 |
. . . . . . . . . 10
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) |
| 54 | | tospos 18465 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Toset → 𝑊 ∈ Poset) |
| 55 | 18, 4, 54 | 3syl 18 |
. . . . . . . . . . . 12
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Poset) |
| 56 | | simpllr 776 |
. . . . . . . . . . . 12
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ 𝐵) |
| 57 | 26 | peano2zd 12725 |
. . . . . . . . . . . . 13
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℤ) |
| 58 | 8, 10 | mulgcl 19109 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Grp ∧ (𝑛 + 1) ∈ ℤ ∧ 𝑥 ∈ 𝐵) → ((𝑛 + 1) · 𝑥) ∈ 𝐵) |
| 59 | 25, 57, 23, 58 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) · 𝑥) ∈ 𝐵) |
| 60 | 8, 11, 12 | plelttr 18389 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Poset ∧ (𝑦 ∈ 𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑥) ∈ 𝐵)) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))) |
| 61 | 55, 56, 28, 59, 60 | syl13anc 1374 |
. . . . . . . . . . 11
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))) |
| 62 | 61 | impl 455 |
. . . . . . . . . 10
⊢
(((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)) |
| 63 | 53, 62 | mpdan 687 |
. . . . . . . . 9
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)) |
| 64 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑛 + 1) → (𝑚 · 𝑥) = ((𝑛 + 1) · 𝑥)) |
| 65 | 64 | breq2d 5155 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑛 + 1) → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < ((𝑛 + 1) · 𝑥))) |
| 66 | 65 | rspcev 3622 |
. . . . . . . . 9
⊢ (((𝑛 + 1) ∈ ℕ ∧ 𝑦 < ((𝑛 + 1) · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥)) |
| 67 | 17, 63, 66 | syl2anc 584 |
. . . . . . . 8
⊢
((((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥)) |
| 68 | 67 | r19.29an 3158 |
. . . . . . 7
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥)) |
| 69 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝑚 · 𝑥) = (𝑛 · 𝑥)) |
| 70 | 69 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < (𝑛 · 𝑥))) |
| 71 | 70 | cbvrexvw 3238 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℕ 𝑦 < (𝑚 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) |
| 72 | 68, 71 | sylib 218 |
. . . . . 6
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) |
| 73 | 11, 12 | pltle 18378 |
. . . . . . . . 9
⊢ ((𝑊 ∈ oGrp ∧ 𝑦 ∈ 𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥))) |
| 74 | 18, 56, 28, 73 | syl3anc 1373 |
. . . . . . . 8
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥))) |
| 75 | 74 | reximdva 3168 |
. . . . . . 7
⊢ ((((𝑊 ∈ oGrp ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))) |
| 76 | 75 | imp 406 |
. . . . . 6
⊢
(((((𝑊 ∈ oGrp
∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) |
| 77 | 72, 76 | impbida 801 |
. . . . 5
⊢ ((((𝑊 ∈ oGrp ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))) |
| 78 | 77 | pm5.74da 804 |
. . . 4
⊢ (((𝑊 ∈ oGrp ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))) |
| 79 | 78 | ralbidva 3176 |
. . 3
⊢ ((𝑊 ∈ oGrp ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))) |
| 80 | 79 | ralbidva 3176 |
. 2
⊢ (𝑊 ∈ oGrp →
(∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))) |
| 81 | 14, 80 | bitrd 279 |
1
⊢ (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))) |