| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmgmd | Structured version Visualization version GIF version | ||
| Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.) |
| Ref | Expression |
|---|---|
| grpmgmd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| grpmgmd | ⊢ (𝜑 → 𝐺 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmgmd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | 1 | grpmndd 18861 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 3 | mndmgm 18651 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Mgmcmgm 18548 Mndcmnd 18644 Grpcgrp 18848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-sgrp 18629 df-mnd 18645 df-grp 18851 |
| This theorem is referenced by: ofldchr 21515 psrlmod 21898 psrdi 21903 psrdir 21904 mplsubglem 21937 psdmul 22082 psd1 22083 psdpw 22086 |
| Copyright terms: Public domain | W3C validator |