MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpmgmd Structured version   Visualization version   GIF version

Theorem grpmgmd 18876
Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.)
Hypothesis
Ref Expression
grpmgmd.g (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpmgmd (𝜑𝐺 ∈ Mgm)

Proof of Theorem grpmgmd
StepHypRef Expression
1 grpmgmd.g . . 3 (𝜑𝐺 ∈ Grp)
21grpmndd 18861 . 2 (𝜑𝐺 ∈ Mnd)
3 mndmgm 18651 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
42, 3syl 17 1 (𝜑𝐺 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Mgmcmgm 18548  Mndcmnd 18644  Grpcgrp 18848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-sgrp 18629  df-mnd 18645  df-grp 18851
This theorem is referenced by:  ofldchr  21515  psrlmod  21898  psrdi  21903  psrdir  21904  mplsubglem  21937  psdmul  22082  psd1  22083  psdpw  22086
  Copyright terms: Public domain W3C validator