| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmgmd | Structured version Visualization version GIF version | ||
| Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.) |
| Ref | Expression |
|---|---|
| grpmgmd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| grpmgmd | ⊢ (𝜑 → 𝐺 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmgmd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | 1 | grpmndd 18884 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 3 | mndmgm 18674 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mgmcmgm 18571 Mndcmnd 18667 Grpcgrp 18871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-ov 7392 df-sgrp 18652 df-mnd 18668 df-grp 18874 |
| This theorem is referenced by: psrgrpOLD 21872 psrlmod 21875 psrdi 21880 psrdir 21881 mplsubglem 21914 psdmul 22059 psd1 22060 psdpw 22063 ofldchr 33298 |
| Copyright terms: Public domain | W3C validator |