MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpmgmd Structured version   Visualization version   GIF version

Theorem grpmgmd 18871
Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.)
Hypothesis
Ref Expression
grpmgmd.g (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpmgmd (𝜑𝐺 ∈ Mgm)

Proof of Theorem grpmgmd
StepHypRef Expression
1 grpmgmd.g . . 3 (𝜑𝐺 ∈ Grp)
21grpmndd 18856 . 2 (𝜑𝐺 ∈ Mnd)
3 mndmgm 18646 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
42, 3syl 17 1 (𝜑𝐺 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Mgmcmgm 18543  Mndcmnd 18639  Grpcgrp 18843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-sgrp 18624  df-mnd 18640  df-grp 18846
This theorem is referenced by:  ofldchr  21511  psrgrpOLD  21892  psrlmod  21895  psrdi  21900  psrdir  21901  mplsubglem  21934  psdmul  22079  psd1  22080  psdpw  22083
  Copyright terms: Public domain W3C validator