![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpmgmd | Structured version Visualization version GIF version |
Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.) |
Ref | Expression |
---|---|
grpmgmd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpmgmd | ⊢ (𝜑 → 𝐺 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmgmd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | 1 | grpmndd 18988 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
3 | mndmgm 18781 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Mgmcmgm 18678 Mndcmnd 18774 Grpcgrp 18975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6527 df-fv 6583 df-ov 7453 df-sgrp 18759 df-mnd 18775 df-grp 18978 |
This theorem is referenced by: psrgrpOLD 22002 psrlmod 22005 psrdi 22010 psrdir 22011 mplsubglem 22044 psdmul 22195 psd1 22196 ofldchr 33311 |
Copyright terms: Public domain | W3C validator |