![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpmgmd | Structured version Visualization version GIF version |
Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.) |
Ref | Expression |
---|---|
grpmgmd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpmgmd | ⊢ (𝜑 → 𝐺 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmgmd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | 1 | grpmndd 18896 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
3 | mndmgm 18694 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Mgmcmgm 18591 Mndcmnd 18687 Grpcgrp 18883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-nul 5300 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 df-sgrp 18672 df-mnd 18688 df-grp 18886 |
This theorem is referenced by: psrgrpOLD 21893 psrlmod 21896 psrdi 21901 psrdir 21902 mplsubglem 21934 psdmul 22083 psd1 22084 ofldchr 33023 |
Copyright terms: Public domain | W3C validator |