MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpmgmd Structured version   Visualization version   GIF version

Theorem grpmgmd 18899
Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.)
Hypothesis
Ref Expression
grpmgmd.g (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpmgmd (𝜑𝐺 ∈ Mgm)

Proof of Theorem grpmgmd
StepHypRef Expression
1 grpmgmd.g . . 3 (𝜑𝐺 ∈ Grp)
21grpmndd 18884 . 2 (𝜑𝐺 ∈ Mnd)
3 mndmgm 18674 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
42, 3syl 17 1 (𝜑𝐺 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Mgmcmgm 18571  Mndcmnd 18667  Grpcgrp 18871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-sgrp 18652  df-mnd 18668  df-grp 18874
This theorem is referenced by:  psrgrpOLD  21872  psrlmod  21875  psrdi  21880  psrdir  21881  mplsubglem  21914  psdmul  22059  psd1  22060  psdpw  22063  ofldchr  33298
  Copyright terms: Public domain W3C validator