| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpmgmd | Structured version Visualization version GIF version | ||
| Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.) |
| Ref | Expression |
|---|---|
| grpmgmd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| grpmgmd | ⊢ (𝜑 → 𝐺 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmgmd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | 1 | grpmndd 18933 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 3 | mndmgm 18723 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Mgmcmgm 18620 Mndcmnd 18716 Grpcgrp 18920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-sgrp 18701 df-mnd 18717 df-grp 18923 |
| This theorem is referenced by: psrgrpOLD 21931 psrlmod 21934 psrdi 21939 psrdir 21940 mplsubglem 21973 psdmul 22118 psd1 22119 psdpw 22122 ofldchr 33284 |
| Copyright terms: Public domain | W3C validator |