MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpmgmd Structured version   Visualization version   GIF version

Theorem grpmgmd 18948
Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.)
Hypothesis
Ref Expression
grpmgmd.g (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpmgmd (𝜑𝐺 ∈ Mgm)

Proof of Theorem grpmgmd
StepHypRef Expression
1 grpmgmd.g . . 3 (𝜑𝐺 ∈ Grp)
21grpmndd 18933 . 2 (𝜑𝐺 ∈ Mnd)
3 mndmgm 18723 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
42, 3syl 17 1 (𝜑𝐺 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Mgmcmgm 18620  Mndcmnd 18716  Grpcgrp 18920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5286
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416  df-sgrp 18701  df-mnd 18717  df-grp 18923
This theorem is referenced by:  psrgrpOLD  21931  psrlmod  21934  psrdi  21939  psrdir  21940  mplsubglem  21973  psdmul  22118  psd1  22119  psdpw  22122  ofldchr  33284
  Copyright terms: Public domain W3C validator