MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpmgmd Structured version   Visualization version   GIF version

Theorem grpmgmd 18911
Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.)
Hypothesis
Ref Expression
grpmgmd.g (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpmgmd (𝜑𝐺 ∈ Mgm)

Proof of Theorem grpmgmd
StepHypRef Expression
1 grpmgmd.g . . 3 (𝜑𝐺 ∈ Grp)
21grpmndd 18896 . 2 (𝜑𝐺 ∈ Mnd)
3 mndmgm 18694 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
42, 3syl 17 1 (𝜑𝐺 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  Mgmcmgm 18591  Mndcmnd 18687  Grpcgrp 18883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-nul 5300
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550  df-ov 7417  df-sgrp 18672  df-mnd 18688  df-grp 18886
This theorem is referenced by:  psrgrpOLD  21893  psrlmod  21896  psrdi  21901  psrdir  21902  mplsubglem  21934  psdmul  22083  psd1  22084  ofldchr  33023
  Copyright terms: Public domain W3C validator