| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hloml | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is orthomodular. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hloml | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39394 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp1d 1142 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 CLatccla 18401 OMLcoml 39213 CvLatclc 39303 HLchlt 39388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-hlat 39389 |
| This theorem is referenced by: hlol 39399 hlomcmat 39403 poml4N 39991 doca2N 41164 djajN 41175 dihoml4c 41414 |
| Copyright terms: Public domain | W3C validator |