Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hloml Structured version   Visualization version   GIF version

Theorem hloml 37298
Description: A Hilbert lattice is orthomodular. (Contributed by NM, 20-Oct-2011.)
Assertion
Ref Expression
hloml (𝐾 ∈ HL → 𝐾 ∈ OML)

Proof of Theorem hloml
StepHypRef Expression
1 hlomcmcv 37297 . 2 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))
21simp1d 1140 1 (𝐾 ∈ HL → 𝐾 ∈ OML)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  CLatccla 18131  OMLcoml 37116  CvLatclc 37206  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-hlat 37292
This theorem is referenced by:  hlol  37302  hlomcmat  37306  poml4N  37894  doca2N  39067  djajN  39078  dihoml4c  39317
  Copyright terms: Public domain W3C validator