| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hloml | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is orthomodular. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hloml | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39476 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp1d 1142 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 CLatccla 18406 OMLcoml 39295 CvLatclc 39385 HLchlt 39470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-hlat 39471 |
| This theorem is referenced by: hlol 39481 hlomcmat 39485 poml4N 40073 doca2N 41246 djajN 41257 dihoml4c 41496 |
| Copyright terms: Public domain | W3C validator |