Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hloml Structured version   Visualization version   GIF version

Theorem hloml 39353
Description: A Hilbert lattice is orthomodular. (Contributed by NM, 20-Oct-2011.)
Assertion
Ref Expression
hloml (𝐾 ∈ HL → 𝐾 ∈ OML)

Proof of Theorem hloml
StepHypRef Expression
1 hlomcmcv 39352 . 2 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))
21simp1d 1143 1 (𝐾 ∈ HL → 𝐾 ∈ OML)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  CLatccla 18565  OMLcoml 39171  CvLatclc 39261  HLchlt 39346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577  df-ov 7441  df-hlat 39347
This theorem is referenced by:  hlol  39357  hlomcmat  39361  poml4N  39950  doca2N  41123  djajN  41134  dihoml4c  41373
  Copyright terms: Public domain W3C validator