Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hloml Structured version   Visualization version   GIF version

Theorem hloml 39315
Description: A Hilbert lattice is orthomodular. (Contributed by NM, 20-Oct-2011.)
Assertion
Ref Expression
hloml (𝐾 ∈ HL → 𝐾 ∈ OML)

Proof of Theorem hloml
StepHypRef Expression
1 hlomcmcv 39314 . 2 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))
21simp1d 1142 1 (𝐾 ∈ HL → 𝐾 ∈ OML)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  CLatccla 18570  OMLcoml 39133  CvLatclc 39223  HLchlt 39308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583  df-ov 7453  df-hlat 39309
This theorem is referenced by:  hlol  39319  hlomcmat  39323  poml4N  39912  doca2N  41085  djajN  41096  dihoml4c  41335
  Copyright terms: Public domain W3C validator