![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hloml | Structured version Visualization version GIF version |
Description: A Hilbert lattice is orthomodular. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hloml | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 39352 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | 1 | simp1d 1143 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 CLatccla 18565 OMLcoml 39171 CvLatclc 39261 HLchlt 39346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 df-hlat 39347 |
This theorem is referenced by: hlol 39357 hlomcmat 39361 poml4N 39950 doca2N 41123 djajN 41134 dihoml4c 41373 |
Copyright terms: Public domain | W3C validator |