Proof of Theorem doca2N
Step | Hyp | Ref
| Expression |
1 | | hlol 37302 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
2 | 1 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OL) |
3 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐾) =
(Base‘𝐾) |
4 | | doca2.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | doca2.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
6 | 3, 4, 5 | diadmclN 38978 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾)) |
7 | 3, 4 | lhpbase 37939 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
8 | 7 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑊 ∈ (Base‘𝐾)) |
9 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(join‘𝐾) =
(join‘𝐾) |
10 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(meet‘𝐾) =
(meet‘𝐾) |
11 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(oc‘𝐾) =
(oc‘𝐾) |
12 | 3, 9, 10, 11 | oldmm1 37158 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
13 | 2, 6, 8, 12 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
14 | 13 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) |
15 | 14 | eqcomd 2744 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) |
16 | 15 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊))) |
17 | | hllat 37304 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
18 | 17 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ Lat) |
19 | 3, 10 | latmcl 18073 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
20 | 18, 6, 8, 19 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
21 | 3, 9, 10, 11 | oldmm2 37159 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OL ∧ (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
22 | 2, 20, 8, 21 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
23 | 16, 22 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
24 | 23 | oveq1d 7270 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))) |
25 | | hlop 37303 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
26 | 25 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OP) |
27 | 3, 11 | opoccl 37135 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
28 | 26, 8, 27 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
29 | 3, 9 | latjass 18116 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))) |
30 | 18, 20, 28, 28, 29 | syl13anc 1370 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))) |
31 | 3, 9 | latjidm 18095 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧
((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) |
32 | 18, 28, 31 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) |
33 | 32 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
34 | 30, 33 | eqtrd 2778 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
35 | 24, 34 | eqtrd 2778 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
36 | 35 | oveq1d 7270 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) |
37 | | hloml 37298 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) |
38 | 37 | ad2antrr 722 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OML) |
39 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝐾) =
(le‘𝐾) |
40 | 3, 39, 10 | latmle2 18098 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊) |
41 | 18, 6, 8, 40 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊) |
42 | 3, 39, 9, 10, 11 | omlspjN 37202 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ ((𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋(meet‘𝐾)𝑊)) |
43 | 38, 20, 8, 41, 42 | syl121anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋(meet‘𝐾)𝑊)) |
44 | 39, 4, 5 | diadmleN 38979 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊) |
45 | 3, 39, 10 | latleeqm1 18100 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋)) |
46 | 18, 6, 8, 45 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋)) |
47 | 44, 46 | mpbid 231 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊) = 𝑋) |
48 | 36, 43, 47 | 3eqtrrd 2783 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 = ((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) |
49 | 48 | fveq2d 6760 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) |
50 | 3, 11 | opoccl 37135 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
51 | 26, 6, 50 | syl2anc 583 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
52 | 3, 9 | latjcl 18072 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧
((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
53 | 18, 51, 28, 52 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
54 | 3, 10 | latmcl 18073 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧
(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
55 | 18, 53, 8, 54 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
56 | 3, 39, 10 | latmle2 18098 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧
(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊) |
57 | 18, 53, 8, 56 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊) |
58 | 3, 39, 4, 5 | diaeldm 38977 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊))) |
59 | 58 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊))) |
60 | 55, 57, 59 | mpbir2and 709 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼) |
61 | | eqid 2738 |
. . . 4
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
62 | | doca2.n |
. . . 4
⊢ ⊥ =
((ocA‘𝐾)‘𝑊) |
63 | 9, 10, 11, 4, 61, 5, 62 | diaocN 39066 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ⊥ ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))) |
64 | 60, 63 | syldan 590 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ⊥ ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))) |
65 | 9, 10, 11, 4, 61, 5, 62 | diaocN 39066 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ⊥ ‘(𝐼‘𝑋))) |
66 | 65 | fveq2d 6760 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ( ⊥ ‘( ⊥
‘(𝐼‘𝑋)))) |
67 | 49, 64, 66 | 3eqtrrd 2783 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘( ⊥
‘(𝐼‘𝑋))) = (𝐼‘𝑋)) |