Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  doca2N Structured version   Visualization version   GIF version

Theorem doca2N 40599
Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
doca2.h 𝐻 = (LHyp‘𝐾)
doca2.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
doca2.n = ((ocA‘𝐾)‘𝑊)
Assertion
Ref Expression
doca2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ‘( ‘(𝐼𝑋))) = (𝐼𝑋))

Proof of Theorem doca2N
StepHypRef Expression
1 hlol 38833 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ OL)
21ad2antrr 725 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OL)
3 eqid 2728 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝐾)
4 doca2.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
5 doca2.i . . . . . . . . . . . . 13 𝐼 = ((DIsoA‘𝐾)‘𝑊)
63, 4, 5diadmclN 40510 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾))
73, 4lhpbase 39471 . . . . . . . . . . . . 13 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
87ad2antlr 726 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑊 ∈ (Base‘𝐾))
9 eqid 2728 . . . . . . . . . . . . 13 (join‘𝐾) = (join‘𝐾)
10 eqid 2728 . . . . . . . . . . . . 13 (meet‘𝐾) = (meet‘𝐾)
11 eqid 2728 . . . . . . . . . . . . 13 (oc‘𝐾) = (oc‘𝐾)
123, 9, 10, 11oldmm1 38689 . . . . . . . . . . . 12 ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)))
132, 6, 8, 12syl3anc 1369 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)))
1413oveq1d 7435 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
1514eqcomd 2734 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊))
1615fveq2d 6901 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)))
17 hllat 38835 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1817ad2antrr 725 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ Lat)
193, 10latmcl 18432 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
2018, 6, 8, 19syl3anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
213, 9, 10, 11oldmm2 38690 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
222, 20, 8, 21syl3anc 1369 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
2316, 22eqtrd 2768 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
2423oveq1d 7435 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)))
25 hlop 38834 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
2625ad2antrr 725 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OP)
273, 11opoccl 38666 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
2826, 8, 27syl2anc 583 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
293, 9latjass 18475 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))))
3018, 20, 28, 28, 29syl13anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))))
313, 9latjidm 18454 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
3218, 28, 31syl2anc 583 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
3332oveq2d 7436 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
3430, 33eqtrd 2768 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
3524, 34eqtrd 2768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
3635oveq1d 7435 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
37 hloml 38829 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OML)
3837ad2antrr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OML)
39 eqid 2728 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
403, 39, 10latmle2 18457 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
4118, 6, 8, 40syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
423, 39, 9, 10, 11omlspjN 38733 . . . . 5 ((𝐾 ∈ OML ∧ ((𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋(meet‘𝐾)𝑊))
4338, 20, 8, 41, 42syl121anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋(meet‘𝐾)𝑊))
4439, 4, 5diadmleN 40511 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊)
453, 39, 10latleeqm1 18459 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
4618, 6, 8, 45syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
4744, 46mpbid 231 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊) = 𝑋)
4836, 43, 473eqtrrd 2773 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 = ((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
4948fveq2d 6901 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
503, 11opoccl 38666 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
5126, 6, 50syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
523, 9latjcl 18431 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
5318, 51, 28, 52syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
543, 10latmcl 18432 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
5518, 53, 8, 54syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
563, 39, 10latmle2 18457 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
5718, 53, 8, 56syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
583, 39, 4, 5diaeldm 40509 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
5958adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
6055, 57, 59mpbir2and 712 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
61 eqid 2728 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
62 doca2.n . . . 4 = ((ocA‘𝐾)‘𝑊)
639, 10, 11, 4, 61, 5, 62diaocN 40598 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
6460, 63syldan 590 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
659, 10, 11, 4, 61, 5, 62diaocN 40598 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ‘(𝐼𝑋)))
6665fveq2d 6901 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ( ‘( ‘(𝐼𝑋))))
6749, 64, 663eqtrrd 2773 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ‘( ‘(𝐼𝑋))) = (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099   class class class wbr 5148  dom cdm 5678  cfv 6548  (class class class)co 7420  Basecbs 17180  lecple 17240  occoc 17241  joincjn 18303  meetcmee 18304  Latclat 18423  OPcops 38644  OLcol 38646  OMLcoml 38647  HLchlt 38822  LHypclh 39457  LTrncltrn 39574  DIsoAcdia 40501  ocAcocaN 40592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-riotaBAD 38425
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-undef 8279  df-map 8847  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-p1 18418  df-lat 18424  df-clat 18491  df-oposet 38648  df-cmtN 38649  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-llines 38971  df-lplanes 38972  df-lvols 38973  df-lines 38974  df-psubsp 38976  df-pmap 38977  df-padd 39269  df-lhyp 39461  df-laut 39462  df-ldil 39577  df-ltrn 39578  df-trl 39632  df-disoa 40502  df-docaN 40593
This theorem is referenced by:  doca3N  40600
  Copyright terms: Public domain W3C validator