Proof of Theorem doca2N
| Step | Hyp | Ref
| Expression |
| 1 | | hlol 39379 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 2 | 1 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OL) |
| 3 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 4 | | doca2.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = (LHyp‘𝐾) |
| 5 | | doca2.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| 6 | 3, 4, 5 | diadmclN 41056 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾)) |
| 7 | 3, 4 | lhpbase 40017 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 8 | 7 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑊 ∈ (Base‘𝐾)) |
| 9 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(join‘𝐾) =
(join‘𝐾) |
| 10 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 11 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(oc‘𝐾) =
(oc‘𝐾) |
| 12 | 3, 9, 10, 11 | oldmm1 39235 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
| 13 | 2, 6, 8, 12 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
| 14 | 13 | oveq1d 7420 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) |
| 15 | 14 | eqcomd 2741 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) |
| 16 | 15 | fveq2d 6880 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊))) |
| 17 | | hllat 39381 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 18 | 17 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ Lat) |
| 19 | 3, 10 | latmcl 18450 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
| 20 | 18, 6, 8, 19 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
| 21 | 3, 9, 10, 11 | oldmm2 39236 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OL ∧ (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
| 22 | 2, 20, 8, 21 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
| 23 | 16, 22 | eqtrd 2770 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
| 24 | 23 | oveq1d 7420 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))) |
| 25 | | hlop 39380 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| 26 | 25 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OP) |
| 27 | 3, 11 | opoccl 39212 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
| 28 | 26, 8, 27 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
| 29 | 3, 9 | latjass 18493 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))) |
| 30 | 18, 20, 28, 28, 29 | syl13anc 1374 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))) |
| 31 | 3, 9 | latjidm 18472 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧
((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) |
| 32 | 18, 28, 31 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) |
| 33 | 32 | oveq2d 7421 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
| 34 | 30, 33 | eqtrd 2770 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
| 35 | 24, 34 | eqtrd 2770 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) |
| 36 | 35 | oveq1d 7420 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) |
| 37 | | hloml 39375 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) |
| 38 | 37 | ad2antrr 726 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OML) |
| 39 | | eqid 2735 |
. . . . . . 7
⊢
(le‘𝐾) =
(le‘𝐾) |
| 40 | 3, 39, 10 | latmle2 18475 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊) |
| 41 | 18, 6, 8, 40 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊) |
| 42 | 3, 39, 9, 10, 11 | omlspjN 39279 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ ((𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋(meet‘𝐾)𝑊)) |
| 43 | 38, 20, 8, 41, 42 | syl121anc 1377 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋(meet‘𝐾)𝑊)) |
| 44 | 39, 4, 5 | diadmleN 41057 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊) |
| 45 | 3, 39, 10 | latleeqm1 18477 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋)) |
| 46 | 18, 6, 8, 45 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋)) |
| 47 | 44, 46 | mpbid 232 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊) = 𝑋) |
| 48 | 36, 43, 47 | 3eqtrrd 2775 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 = ((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) |
| 49 | 48 | fveq2d 6880 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) |
| 50 | 3, 11 | opoccl 39212 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 51 | 26, 6, 50 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 52 | 3, 9 | latjcl 18449 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧
((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
| 53 | 18, 51, 28, 52 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
| 54 | 3, 10 | latmcl 18450 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧
(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
| 55 | 18, 53, 8, 54 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
| 56 | 3, 39, 10 | latmle2 18475 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧
(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊) |
| 57 | 18, 53, 8, 56 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊) |
| 58 | 3, 39, 4, 5 | diaeldm 41055 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊))) |
| 59 | 58 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊))) |
| 60 | 55, 57, 59 | mpbir2and 713 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼) |
| 61 | | eqid 2735 |
. . . 4
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
| 62 | | doca2.n |
. . . 4
⊢ ⊥ =
((ocA‘𝐾)‘𝑊) |
| 63 | 9, 10, 11, 4, 61, 5, 62 | diaocN 41144 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ⊥ ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))) |
| 64 | 60, 63 | syldan 591 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ⊥ ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))) |
| 65 | 9, 10, 11, 4, 61, 5, 62 | diaocN 41144 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ⊥ ‘(𝐼‘𝑋))) |
| 66 | 65 | fveq2d 6880 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ( ⊥ ‘( ⊥
‘(𝐼‘𝑋)))) |
| 67 | 49, 64, 66 | 3eqtrrd 2775 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘( ⊥
‘(𝐼‘𝑋))) = (𝐼‘𝑋)) |