Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  doca2N Structured version   Visualization version   GIF version

Theorem doca2N 39997
Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
doca2.h 𝐻 = (LHyp‘𝐾)
doca2.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
doca2.n = ((ocA‘𝐾)‘𝑊)
Assertion
Ref Expression
doca2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ‘( ‘(𝐼𝑋))) = (𝐼𝑋))

Proof of Theorem doca2N
StepHypRef Expression
1 hlol 38231 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ OL)
21ad2antrr 725 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OL)
3 eqid 2733 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝐾)
4 doca2.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
5 doca2.i . . . . . . . . . . . . 13 𝐼 = ((DIsoA‘𝐾)‘𝑊)
63, 4, 5diadmclN 39908 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾))
73, 4lhpbase 38869 . . . . . . . . . . . . 13 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
87ad2antlr 726 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑊 ∈ (Base‘𝐾))
9 eqid 2733 . . . . . . . . . . . . 13 (join‘𝐾) = (join‘𝐾)
10 eqid 2733 . . . . . . . . . . . . 13 (meet‘𝐾) = (meet‘𝐾)
11 eqid 2733 . . . . . . . . . . . . 13 (oc‘𝐾) = (oc‘𝐾)
123, 9, 10, 11oldmm1 38087 . . . . . . . . . . . 12 ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)))
132, 6, 8, 12syl3anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)))
1413oveq1d 7424 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
1514eqcomd 2739 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊))
1615fveq2d 6896 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)))
17 hllat 38233 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1817ad2antrr 725 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ Lat)
193, 10latmcl 18393 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
2018, 6, 8, 19syl3anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
213, 9, 10, 11oldmm2 38088 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
222, 20, 8, 21syl3anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
2316, 22eqtrd 2773 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
2423oveq1d 7424 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)))
25 hlop 38232 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
2625ad2antrr 725 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OP)
273, 11opoccl 38064 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
2826, 8, 27syl2anc 585 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
293, 9latjass 18436 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))))
3018, 20, 28, 28, 29syl13anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))))
313, 9latjidm 18415 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
3218, 28, 31syl2anc 585 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
3332oveq2d 7425 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
3430, 33eqtrd 2773 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
3524, 34eqtrd 2773 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
3635oveq1d 7424 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
37 hloml 38227 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OML)
3837ad2antrr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OML)
39 eqid 2733 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
403, 39, 10latmle2 18418 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
4118, 6, 8, 40syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
423, 39, 9, 10, 11omlspjN 38131 . . . . 5 ((𝐾 ∈ OML ∧ ((𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋(meet‘𝐾)𝑊))
4338, 20, 8, 41, 42syl121anc 1376 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋(meet‘𝐾)𝑊))
4439, 4, 5diadmleN 39909 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊)
453, 39, 10latleeqm1 18420 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
4618, 6, 8, 45syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
4744, 46mpbid 231 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊) = 𝑋)
4836, 43, 473eqtrrd 2778 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 = ((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
4948fveq2d 6896 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
503, 11opoccl 38064 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
5126, 6, 50syl2anc 585 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
523, 9latjcl 18392 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
5318, 51, 28, 52syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
543, 10latmcl 18393 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
5518, 53, 8, 54syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
563, 39, 10latmle2 18418 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
5718, 53, 8, 56syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
583, 39, 4, 5diaeldm 39907 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
5958adantr 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
6055, 57, 59mpbir2and 712 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
61 eqid 2733 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
62 doca2.n . . . 4 = ((ocA‘𝐾)‘𝑊)
639, 10, 11, 4, 61, 5, 62diaocN 39996 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
6460, 63syldan 592 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
659, 10, 11, 4, 61, 5, 62diaocN 39996 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ‘(𝐼𝑋)))
6665fveq2d 6896 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ( ‘( ‘(𝐼𝑋))))
6749, 64, 663eqtrrd 2778 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ‘( ‘(𝐼𝑋))) = (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107   class class class wbr 5149  dom cdm 5677  cfv 6544  (class class class)co 7409  Basecbs 17144  lecple 17204  occoc 17205  joincjn 18264  meetcmee 18265  Latclat 18384  OPcops 38042  OLcol 38044  OMLcoml 38045  HLchlt 38220  LHypclh 38855  LTrncltrn 38972  DIsoAcdia 39899  ocAcocaN 39990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-riotaBAD 37823
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-undef 8258  df-map 8822  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-cmtN 38047  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-llines 38369  df-lplanes 38370  df-lvols 38371  df-lines 38372  df-psubsp 38374  df-pmap 38375  df-padd 38667  df-lhyp 38859  df-laut 38860  df-ldil 38975  df-ltrn 38976  df-trl 39030  df-disoa 39900  df-docaN 39991
This theorem is referenced by:  doca3N  39998
  Copyright terms: Public domain W3C validator