Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlclat Structured version   Visualization version   GIF version

Theorem hlclat 39351
Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.)
Assertion
Ref Expression
hlclat (𝐾 ∈ HL → 𝐾 ∈ CLat)

Proof of Theorem hlclat
StepHypRef Expression
1 hlomcmcv 39349 . 2 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))
21simp2d 1143 1 (𝐾 ∈ HL → 𝐾 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  CLatccla 18457  OMLcoml 39168  CvLatclc 39258  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-hlat 39344
This theorem is referenced by:  hlomcmat  39358  glbconN  39370  glbconNOLD  39371  pmaple  39755  pmapglbx  39763  polsubN  39901  2polvalN  39908  2polssN  39909  3polN  39910  2pmaplubN  39920  paddunN  39921  poldmj1N  39922  pnonsingN  39927  ispsubcl2N  39941  psubclinN  39942  paddatclN  39943  polsubclN  39946  poml4N  39947  diaglbN  41049  diaintclN  41052  dibglbN  41160  dibintclN  41161  dihglblem2N  41288  dihglblem3N  41289  dihglblem4  41291  dihglbcpreN  41294  dihglblem6  41334  dihintcl  41338  dochval2  41346  dochcl  41347  dochvalr  41351  dochss  41359
  Copyright terms: Public domain W3C validator