| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlclat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlclat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39356 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp2d 1143 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CLatccla 18464 OMLcoml 39175 CvLatclc 39265 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-hlat 39351 |
| This theorem is referenced by: hlomcmat 39365 glbconN 39377 glbconNOLD 39378 pmaple 39762 pmapglbx 39770 polsubN 39908 2polvalN 39915 2polssN 39916 3polN 39917 2pmaplubN 39927 paddunN 39928 poldmj1N 39929 pnonsingN 39934 ispsubcl2N 39948 psubclinN 39949 paddatclN 39950 polsubclN 39953 poml4N 39954 diaglbN 41056 diaintclN 41059 dibglbN 41167 dibintclN 41168 dihglblem2N 41295 dihglblem3N 41296 dihglblem4 41298 dihglbcpreN 41301 dihglblem6 41341 dihintcl 41345 dochval2 41353 dochcl 41354 dochvalr 41358 dochss 41366 |
| Copyright terms: Public domain | W3C validator |