![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlclat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlclat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 39312 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | 1 | simp2d 1143 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 CLatccla 18568 OMLcoml 39131 CvLatclc 39221 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-hlat 39307 |
This theorem is referenced by: hlomcmat 39321 glbconN 39333 glbconNOLD 39334 pmaple 39718 pmapglbx 39726 polsubN 39864 2polvalN 39871 2polssN 39872 3polN 39873 2pmaplubN 39883 paddunN 39884 poldmj1N 39885 pnonsingN 39890 ispsubcl2N 39904 psubclinN 39905 paddatclN 39906 polsubclN 39909 poml4N 39910 diaglbN 41012 diaintclN 41015 dibglbN 41123 dibintclN 41124 dihglblem2N 41251 dihglblem3N 41252 dihglblem4 41254 dihglbcpreN 41257 dihglblem6 41297 dihintcl 41301 dochval2 41309 dochcl 41310 dochvalr 41314 dochss 41322 |
Copyright terms: Public domain | W3C validator |