| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlclat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlclat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39394 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp2d 1143 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 CLatccla 18401 OMLcoml 39213 CvLatclc 39303 HLchlt 39388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-hlat 39389 |
| This theorem is referenced by: hlomcmat 39403 glbconN 39415 pmaple 39799 pmapglbx 39807 polsubN 39945 2polvalN 39952 2polssN 39953 3polN 39954 2pmaplubN 39964 paddunN 39965 poldmj1N 39966 pnonsingN 39971 ispsubcl2N 39985 psubclinN 39986 paddatclN 39987 polsubclN 39990 poml4N 39991 diaglbN 41093 diaintclN 41096 dibglbN 41204 dibintclN 41205 dihglblem2N 41332 dihglblem3N 41333 dihglblem4 41335 dihglbcpreN 41338 dihglblem6 41378 dihintcl 41382 dochval2 41390 dochcl 41391 dochvalr 41395 dochss 41403 |
| Copyright terms: Public domain | W3C validator |