Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlclat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlclat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 37112 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | 1 | simp2d 1145 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 CLatccla 18009 OMLcoml 36931 CvLatclc 37021 HLchlt 37106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3415 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-nul 4243 df-if 4445 df-sn 4547 df-pr 4549 df-op 4553 df-uni 4825 df-br 5059 df-iota 6343 df-fv 6393 df-ov 7221 df-hlat 37107 |
This theorem is referenced by: hlomcmat 37121 glbconN 37133 pmaple 37517 pmapglbx 37525 polsubN 37663 2polvalN 37670 2polssN 37671 3polN 37672 2pmaplubN 37682 paddunN 37683 poldmj1N 37684 pnonsingN 37689 ispsubcl2N 37703 psubclinN 37704 paddatclN 37705 polsubclN 37708 poml4N 37709 diaglbN 38811 diaintclN 38814 dibglbN 38922 dibintclN 38923 dihglblem2N 39050 dihglblem3N 39051 dihglblem4 39053 dihglbcpreN 39056 dihglblem6 39096 dihintcl 39100 dochval2 39108 dochcl 39109 dochvalr 39113 dochss 39121 |
Copyright terms: Public domain | W3C validator |