| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlclat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlclat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39332 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp2d 1143 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 CLatccla 18513 OMLcoml 39151 CvLatclc 39241 HLchlt 39326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-hlat 39327 |
| This theorem is referenced by: hlomcmat 39341 glbconN 39353 glbconNOLD 39354 pmaple 39738 pmapglbx 39746 polsubN 39884 2polvalN 39891 2polssN 39892 3polN 39893 2pmaplubN 39903 paddunN 39904 poldmj1N 39905 pnonsingN 39910 ispsubcl2N 39924 psubclinN 39925 paddatclN 39926 polsubclN 39929 poml4N 39930 diaglbN 41032 diaintclN 41035 dibglbN 41143 dibintclN 41144 dihglblem2N 41271 dihglblem3N 41272 dihglblem4 41274 dihglbcpreN 41277 dihglblem6 41317 dihintcl 41321 dochval2 41329 dochcl 41330 dochvalr 41334 dochss 41342 |
| Copyright terms: Public domain | W3C validator |