Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlclat Structured version   Visualization version   GIF version

Theorem hlclat 39396
Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.)
Assertion
Ref Expression
hlclat (𝐾 ∈ HL → 𝐾 ∈ CLat)

Proof of Theorem hlclat
StepHypRef Expression
1 hlomcmcv 39394 . 2 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))
21simp2d 1143 1 (𝐾 ∈ HL → 𝐾 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  CLatccla 18401  OMLcoml 39213  CvLatclc 39303  HLchlt 39388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-hlat 39389
This theorem is referenced by:  hlomcmat  39403  glbconN  39415  pmaple  39799  pmapglbx  39807  polsubN  39945  2polvalN  39952  2polssN  39953  3polN  39954  2pmaplubN  39964  paddunN  39965  poldmj1N  39966  pnonsingN  39971  ispsubcl2N  39985  psubclinN  39986  paddatclN  39987  polsubclN  39990  poml4N  39991  diaglbN  41093  diaintclN  41096  dibglbN  41204  dibintclN  41205  dihglblem2N  41332  dihglblem3N  41333  dihglblem4  41335  dihglbcpreN  41338  dihglblem6  41378  dihintcl  41382  dochval2  41390  dochcl  41391  dochvalr  41395  dochss  41403
  Copyright terms: Public domain W3C validator