Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlclat Structured version   Visualization version   GIF version

Theorem hlclat 39358
Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.)
Assertion
Ref Expression
hlclat (𝐾 ∈ HL → 𝐾 ∈ CLat)

Proof of Theorem hlclat
StepHypRef Expression
1 hlomcmcv 39356 . 2 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))
21simp2d 1143 1 (𝐾 ∈ HL → 𝐾 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  CLatccla 18464  OMLcoml 39175  CvLatclc 39265  HLchlt 39350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-hlat 39351
This theorem is referenced by:  hlomcmat  39365  glbconN  39377  glbconNOLD  39378  pmaple  39762  pmapglbx  39770  polsubN  39908  2polvalN  39915  2polssN  39916  3polN  39917  2pmaplubN  39927  paddunN  39928  poldmj1N  39929  pnonsingN  39934  ispsubcl2N  39948  psubclinN  39949  paddatclN  39950  polsubclN  39953  poml4N  39954  diaglbN  41056  diaintclN  41059  dibglbN  41167  dibintclN  41168  dihglblem2N  41295  dihglblem3N  41296  dihglblem4  41298  dihglbcpreN  41301  dihglblem6  41341  dihintcl  41345  dochval2  41353  dochcl  41354  dochvalr  41358  dochss  41366
  Copyright terms: Public domain W3C validator