Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlclat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlclat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 37297 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | 1 | simp2d 1141 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 CLatccla 18131 OMLcoml 37116 CvLatclc 37206 HLchlt 37291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-hlat 37292 |
This theorem is referenced by: hlomcmat 37306 glbconN 37318 pmaple 37702 pmapglbx 37710 polsubN 37848 2polvalN 37855 2polssN 37856 3polN 37857 2pmaplubN 37867 paddunN 37868 poldmj1N 37869 pnonsingN 37874 ispsubcl2N 37888 psubclinN 37889 paddatclN 37890 polsubclN 37893 poml4N 37894 diaglbN 38996 diaintclN 38999 dibglbN 39107 dibintclN 39108 dihglblem2N 39235 dihglblem3N 39236 dihglblem4 39238 dihglbcpreN 39241 dihglblem6 39281 dihintcl 39285 dochval2 39293 dochcl 39294 dochvalr 39298 dochss 39306 |
Copyright terms: Public domain | W3C validator |