| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlclat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlclat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39374 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp2d 1143 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 CLatccla 18508 OMLcoml 39193 CvLatclc 39283 HLchlt 39368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-hlat 39369 |
| This theorem is referenced by: hlomcmat 39383 glbconN 39395 glbconNOLD 39396 pmaple 39780 pmapglbx 39788 polsubN 39926 2polvalN 39933 2polssN 39934 3polN 39935 2pmaplubN 39945 paddunN 39946 poldmj1N 39947 pnonsingN 39952 ispsubcl2N 39966 psubclinN 39967 paddatclN 39968 polsubclN 39971 poml4N 39972 diaglbN 41074 diaintclN 41077 dibglbN 41185 dibintclN 41186 dihglblem2N 41313 dihglblem3N 41314 dihglblem4 41316 dihglbcpreN 41319 dihglblem6 41359 dihintcl 41363 dochval2 41371 dochcl 41372 dochvalr 41376 dochss 41384 |
| Copyright terms: Public domain | W3C validator |