| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlclat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlclat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39334 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp2d 1143 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CLatccla 18422 OMLcoml 39153 CvLatclc 39243 HLchlt 39328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-hlat 39329 |
| This theorem is referenced by: hlomcmat 39343 glbconN 39355 glbconNOLD 39356 pmaple 39740 pmapglbx 39748 polsubN 39886 2polvalN 39893 2polssN 39894 3polN 39895 2pmaplubN 39905 paddunN 39906 poldmj1N 39907 pnonsingN 39912 ispsubcl2N 39926 psubclinN 39927 paddatclN 39928 polsubclN 39931 poml4N 39932 diaglbN 41034 diaintclN 41037 dibglbN 41145 dibintclN 41146 dihglblem2N 41273 dihglblem3N 41274 dihglblem4 41276 dihglbcpreN 41279 dihglblem6 41319 dihintcl 41323 dochval2 41331 dochcl 41332 dochvalr 41336 dochss 41344 |
| Copyright terms: Public domain | W3C validator |