| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlclat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlclat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39475 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp2d 1143 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 CLatccla 18406 OMLcoml 39294 CvLatclc 39384 HLchlt 39469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-hlat 39470 |
| This theorem is referenced by: hlomcmat 39484 glbconN 39496 pmaple 39880 pmapglbx 39888 polsubN 40026 2polvalN 40033 2polssN 40034 3polN 40035 2pmaplubN 40045 paddunN 40046 poldmj1N 40047 pnonsingN 40052 ispsubcl2N 40066 psubclinN 40067 paddatclN 40068 polsubclN 40071 poml4N 40072 diaglbN 41174 diaintclN 41177 dibglbN 41285 dibintclN 41286 dihglblem2N 41413 dihglblem3N 41414 dihglblem4 41416 dihglbcpreN 41419 dihglblem6 41459 dihintcl 41463 dochval2 41471 dochcl 41472 dochvalr 41476 dochss 41484 |
| Copyright terms: Public domain | W3C validator |