| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlclat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlclat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39349 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp2d 1143 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CLatccla 18457 OMLcoml 39168 CvLatclc 39258 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-hlat 39344 |
| This theorem is referenced by: hlomcmat 39358 glbconN 39370 glbconNOLD 39371 pmaple 39755 pmapglbx 39763 polsubN 39901 2polvalN 39908 2polssN 39909 3polN 39910 2pmaplubN 39920 paddunN 39921 poldmj1N 39922 pnonsingN 39927 ispsubcl2N 39941 psubclinN 39942 paddatclN 39943 polsubclN 39946 poml4N 39947 diaglbN 41049 diaintclN 41052 dibglbN 41160 dibintclN 41161 dihglblem2N 41288 dihglblem3N 41289 dihglblem4 41291 dihglbcpreN 41294 dihglblem6 41334 dihintcl 41338 dochval2 41346 dochcl 41347 dochvalr 41351 dochss 41359 |
| Copyright terms: Public domain | W3C validator |