Proof of Theorem poml4N
Step | Hyp | Ref
| Expression |
1 | | eqcom 2766 |
. . 3
⊢ (( ⊥
‘( ⊥ ‘𝑌)) = 𝑌 ↔ 𝑌 = ( ⊥ ‘( ⊥
‘𝑌))) |
2 | | eqid 2759 |
. . . . . . 7
⊢
(lub‘𝐾) =
(lub‘𝐾) |
3 | | poml4.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | eqid 2759 |
. . . . . . 7
⊢
(pmap‘𝐾) =
(pmap‘𝐾) |
5 | | poml4.p |
. . . . . . 7
⊢ ⊥ =
(⊥𝑃‘𝐾) |
6 | 2, 3, 4, 5 | 2polvalN 37483 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑌)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) |
7 | 6 | 3adant2 1129 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑌)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) |
8 | 7 | eqeq2d 2770 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑌 = ( ⊥ ‘( ⊥
‘𝑌)) ↔ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
9 | 8 | biimpd 232 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑌 = ( ⊥ ‘( ⊥
‘𝑌)) → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
10 | 1, 9 | syl5bi 245 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (( ⊥ ‘( ⊥
‘𝑌)) = 𝑌 → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
11 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ HL) |
12 | | hloml 36926 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) |
13 | 11, 12 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ OML) |
14 | | hlclat 36927 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
15 | 11, 14 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ CLat) |
16 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋 ⊆ 𝐴) |
17 | | eqid 2759 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
18 | 17, 3 | atssbase 36859 |
. . . . . . . . 9
⊢ 𝐴 ⊆ (Base‘𝐾) |
19 | 16, 18 | sstrdi 3905 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋 ⊆ (Base‘𝐾)) |
20 | 17, 2 | clatlubcl 17781 |
. . . . . . . 8
⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
21 | 15, 19, 20 | syl2anc 588 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
22 | | simpl3 1191 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 ⊆ 𝐴) |
23 | 22, 18 | sstrdi 3905 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 ⊆ (Base‘𝐾)) |
24 | 17, 2 | clatlubcl 17781 |
. . . . . . . 8
⊢ ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) |
25 | 15, 23, 24 | syl2anc 588 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) |
26 | 13, 21, 25 | 3jca 1126 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (𝐾 ∈ OML ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))) |
27 | | simprl 771 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋 ⊆ 𝑌) |
28 | | eqid 2759 |
. . . . . . . 8
⊢
(le‘𝐾) =
(le‘𝐾) |
29 | 17, 28, 2 | lubss 17790 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾) ∧ 𝑋 ⊆ 𝑌) → ((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌)) |
30 | 15, 23, 27, 29 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌)) |
31 | | eqid 2759 |
. . . . . . 7
⊢
(meet‘𝐾) =
(meet‘𝐾) |
32 | | eqid 2759 |
. . . . . . 7
⊢
(oc‘𝐾) =
(oc‘𝐾) |
33 | 17, 28, 31, 32 | omllaw4 36815 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧
((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌) → (((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)) = ((lub‘𝐾)‘𝑋))) |
34 | 26, 30, 33 | sylc 65 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)) = ((lub‘𝐾)‘𝑋)) |
35 | 34 | fveq2d 6663 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋))) |
36 | 2, 32, 3, 4, 5 | polval2N 37475 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) |
37 | 11, 16, 36 | syl2anc 588 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ⊥ ‘𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) |
38 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) |
39 | 37, 38 | ineq12d 4119 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ⊥ ‘𝑋) ∩ 𝑌) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
40 | | hlop 36931 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
41 | 11, 40 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ OP) |
42 | 17, 32 | opoccl 36763 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧
((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
43 | 41, 21, 42 | syl2anc 588 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
44 | 17, 31, 3, 4 | pmapmeet 37342 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧
((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
45 | 11, 43, 25, 44 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
46 | 39, 45 | eqtr4d 2797 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ⊥ ‘𝑋) ∩ 𝑌) = ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) |
47 | 46 | fveq2d 6663 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) = ( ⊥
‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))))) |
48 | 11 | hllatd 36933 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ Lat) |
49 | 17, 31 | latmcl 17721 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧
((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) |
50 | 48, 43, 25, 49 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) |
51 | 17, 32, 4, 5 | polpmapN 37481 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧
(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ( ⊥
‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))))) |
52 | 11, 50, 51 | syl2anc 588 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ⊥
‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))))) |
53 | 47, 52 | eqtrd 2794 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))))) |
54 | 53, 38 | ineq12d 4119 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) ∩ 𝑌) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
55 | 17, 32 | opoccl 36763 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧
(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾)) |
56 | 41, 50, 55 | syl2anc 588 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾)) |
57 | 17, 31, 3, 4 | pmapmeet 37342 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧
((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
58 | 11, 56, 25, 57 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
59 | 54, 58 | eqtr4d 2797 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) |
60 | 2, 3, 4, 5 | 2polvalN 37483 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑋)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑋))) |
61 | 11, 16, 60 | syl2anc 588 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ⊥ ‘( ⊥
‘𝑋)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑋))) |
62 | 35, 59, 61 | 3eqtr4d 2804 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥
‘𝑋))) |
63 | 62 | ex 417 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥
‘𝑋)))) |
64 | 10, 63 | sylan2d 608 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘( ⊥
‘𝑌)) = 𝑌) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥
‘𝑋)))) |