Proof of Theorem poml4N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqcom 2744 | . . 3
⊢ (( ⊥
‘( ⊥ ‘𝑌)) = 𝑌 ↔ 𝑌 = ( ⊥ ‘( ⊥
‘𝑌))) | 
| 2 |  | eqid 2737 | . . . . . . 7
⊢
(lub‘𝐾) =
(lub‘𝐾) | 
| 3 |  | poml4.a | . . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) | 
| 4 |  | eqid 2737 | . . . . . . 7
⊢
(pmap‘𝐾) =
(pmap‘𝐾) | 
| 5 |  | poml4.p | . . . . . . 7
⊢  ⊥ =
(⊥𝑃‘𝐾) | 
| 6 | 2, 3, 4, 5 | 2polvalN 39916 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑌)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) | 
| 7 | 6 | 3adant2 1132 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑌)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) | 
| 8 | 7 | eqeq2d 2748 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑌 = ( ⊥ ‘( ⊥
‘𝑌)) ↔ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) | 
| 9 | 8 | biimpd 229 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑌 = ( ⊥ ‘( ⊥
‘𝑌)) → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) | 
| 10 | 1, 9 | biimtrid 242 | . 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (( ⊥ ‘( ⊥
‘𝑌)) = 𝑌 → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) | 
| 11 |  | simpl1 1192 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ HL) | 
| 12 |  | hloml 39358 | . . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | 
| 13 | 11, 12 | syl 17 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ OML) | 
| 14 |  | hlclat 39359 | . . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | 
| 15 | 11, 14 | syl 17 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ CLat) | 
| 16 |  | simpl2 1193 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋 ⊆ 𝐴) | 
| 17 |  | eqid 2737 | . . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 18 | 17, 3 | atssbase 39291 | . . . . . . . . 9
⊢ 𝐴 ⊆ (Base‘𝐾) | 
| 19 | 16, 18 | sstrdi 3996 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋 ⊆ (Base‘𝐾)) | 
| 20 | 17, 2 | clatlubcl 18548 | . . . . . . . 8
⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) | 
| 21 | 15, 19, 20 | syl2anc 584 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) | 
| 22 |  | simpl3 1194 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 ⊆ 𝐴) | 
| 23 | 22, 18 | sstrdi 3996 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 ⊆ (Base‘𝐾)) | 
| 24 | 17, 2 | clatlubcl 18548 | . . . . . . . 8
⊢ ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) | 
| 25 | 15, 23, 24 | syl2anc 584 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) | 
| 26 | 13, 21, 25 | 3jca 1129 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (𝐾 ∈ OML ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))) | 
| 27 |  | simprl 771 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋 ⊆ 𝑌) | 
| 28 |  | eqid 2737 | . . . . . . . 8
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 29 | 17, 28, 2 | lubss 18558 | . . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾) ∧ 𝑋 ⊆ 𝑌) → ((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌)) | 
| 30 | 15, 23, 27, 29 | syl3anc 1373 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌)) | 
| 31 |  | eqid 2737 | . . . . . . 7
⊢
(meet‘𝐾) =
(meet‘𝐾) | 
| 32 |  | eqid 2737 | . . . . . . 7
⊢
(oc‘𝐾) =
(oc‘𝐾) | 
| 33 | 17, 28, 31, 32 | omllaw4 39247 | . . . . . 6
⊢ ((𝐾 ∈ OML ∧
((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌) → (((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)) = ((lub‘𝐾)‘𝑋))) | 
| 34 | 26, 30, 33 | sylc 65 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)) = ((lub‘𝐾)‘𝑋)) | 
| 35 | 34 | fveq2d 6910 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋))) | 
| 36 | 2, 32, 3, 4, 5 | polval2N 39908 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) | 
| 37 | 11, 16, 36 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ⊥ ‘𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) | 
| 38 |  | simprr 773 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) | 
| 39 | 37, 38 | ineq12d 4221 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ⊥ ‘𝑋) ∩ 𝑌) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) | 
| 40 |  | hlop 39363 | . . . . . . . . . . . 12
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | 
| 41 | 11, 40 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ OP) | 
| 42 | 17, 32 | opoccl 39195 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧
((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) | 
| 43 | 41, 21, 42 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) | 
| 44 | 17, 31, 3, 4 | pmapmeet 39775 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧
((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) | 
| 45 | 11, 43, 25, 44 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) | 
| 46 | 39, 45 | eqtr4d 2780 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ⊥ ‘𝑋) ∩ 𝑌) = ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) | 
| 47 | 46 | fveq2d 6910 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) = ( ⊥
‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))))) | 
| 48 | 11 | hllatd 39365 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ Lat) | 
| 49 | 17, 31 | latmcl 18485 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧
((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) | 
| 50 | 48, 43, 25, 49 | syl3anc 1373 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) | 
| 51 | 17, 32, 4, 5 | polpmapN 39914 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧
(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ( ⊥
‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))))) | 
| 52 | 11, 50, 51 | syl2anc 584 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ⊥
‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))))) | 
| 53 | 47, 52 | eqtrd 2777 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))))) | 
| 54 | 53, 38 | ineq12d 4221 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) ∩ 𝑌) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) | 
| 55 | 17, 32 | opoccl 39195 | . . . . . . 7
⊢ ((𝐾 ∈ OP ∧
(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾)) | 
| 56 | 41, 50, 55 | syl2anc 584 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾)) | 
| 57 | 17, 31, 3, 4 | pmapmeet 39775 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧
((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) | 
| 58 | 11, 56, 25, 57 | syl3anc 1373 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) | 
| 59 | 54, 58 | eqtr4d 2780 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) | 
| 60 | 2, 3, 4, 5 | 2polvalN 39916 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑋)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑋))) | 
| 61 | 11, 16, 60 | syl2anc 584 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ⊥ ‘( ⊥
‘𝑋)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑋))) | 
| 62 | 35, 59, 61 | 3eqtr4d 2787 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥
‘𝑋))) | 
| 63 | 62 | ex 412 | . 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥
‘𝑋)))) | 
| 64 | 10, 63 | sylan2d 605 | 1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘( ⊥
‘𝑌)) = 𝑌) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥
‘𝑋)))) |