Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poml4N Structured version   Visualization version   GIF version

Theorem poml4N 37967
Description: Orthomodular law for projective lattices. Lemma 3.3(1) in [Holland95] p. 215. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
poml4.a 𝐴 = (Atoms‘𝐾)
poml4.p = (⊥𝑃𝐾)
Assertion
Ref Expression
poml4N ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌 ∧ ( ‘( 𝑌)) = 𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))

Proof of Theorem poml4N
StepHypRef Expression
1 eqcom 2745 . . 3 (( ‘( 𝑌)) = 𝑌𝑌 = ( ‘( 𝑌)))
2 eqid 2738 . . . . . . 7 (lub‘𝐾) = (lub‘𝐾)
3 poml4.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 eqid 2738 . . . . . . 7 (pmap‘𝐾) = (pmap‘𝐾)
5 poml4.p . . . . . . 7 = (⊥𝑃𝐾)
62, 3, 4, 52polvalN 37928 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( ‘( 𝑌)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))
763adant2 1130 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘( 𝑌)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))
87eqeq2d 2749 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑌 = ( ‘( 𝑌)) ↔ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
98biimpd 228 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑌 = ( ‘( 𝑌)) → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
101, 9syl5bi 241 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑌)) = 𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
11 simpl1 1190 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ HL)
12 hloml 37371 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OML)
1311, 12syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ OML)
14 hlclat 37372 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CLat)
1511, 14syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ CLat)
16 simpl2 1191 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋𝐴)
17 eqid 2738 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1817, 3atssbase 37304 . . . . . . . . 9 𝐴 ⊆ (Base‘𝐾)
1916, 18sstrdi 3933 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋 ⊆ (Base‘𝐾))
2017, 2clatlubcl 18221 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
2115, 19, 20syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
22 simpl3 1192 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌𝐴)
2322, 18sstrdi 3933 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 ⊆ (Base‘𝐾))
2417, 2clatlubcl 18221 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
2515, 23, 24syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
2613, 21, 253jca 1127 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (𝐾 ∈ OML ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)))
27 simprl 768 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋𝑌)
28 eqid 2738 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
2917, 28, 2lubss 18231 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾) ∧ 𝑋𝑌) → ((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌))
3015, 23, 27, 29syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌))
31 eqid 2738 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
32 eqid 2738 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
3317, 28, 31, 32omllaw4 37260 . . . . . 6 ((𝐾 ∈ OML ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌) → (((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)) = ((lub‘𝐾)‘𝑋)))
3426, 30, 33sylc 65 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)) = ((lub‘𝐾)‘𝑋))
3534fveq2d 6778 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
362, 32, 3, 4, 5polval2N 37920 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
3711, 16, 36syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( 𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
38 simprr 770 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))
3937, 38ineq12d 4147 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( 𝑋) ∩ 𝑌) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
40 hlop 37376 . . . . . . . . . . . 12 (𝐾 ∈ HL → 𝐾 ∈ OP)
4111, 40syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ OP)
4217, 32opoccl 37208 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
4341, 21, 42syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
4417, 31, 3, 4pmapmeet 37787 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
4511, 43, 25, 44syl3anc 1370 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
4639, 45eqtr4d 2781 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( 𝑋) ∩ 𝑌) = ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))))
4746fveq2d 6778 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘(( 𝑋) ∩ 𝑌)) = ( ‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
4811hllatd 37378 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ Lat)
4917, 31latmcl 18158 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
5048, 43, 25, 49syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
5117, 32, 4, 5polpmapN 37926 . . . . . . . 8 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ( ‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
5211, 50, 51syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
5347, 52eqtrd 2778 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘(( 𝑋) ∩ 𝑌)) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
5453, 38ineq12d 4147 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
5517, 32opoccl 37208 . . . . . . 7 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾))
5641, 50, 55syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾))
5717, 31, 3, 4pmapmeet 37787 . . . . . 6 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
5811, 56, 25, 57syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
5954, 58eqtr4d 2781 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))))
602, 3, 4, 52polvalN 37928 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
6111, 16, 60syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘( 𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
6235, 59, 613eqtr4d 2788 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋)))
6362ex 413 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))
6410, 63sylan2d 605 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌 ∧ ( ‘( 𝑌)) = 𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  occoc 16970  lubclub 18027  meetcmee 18030  Latclat 18149  CLatccla 18216  OPcops 37186  OMLcoml 37189  Atomscatm 37277  HLchlt 37364  pmapcpmap 37511  𝑃cpolN 37916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-pmap 37518  df-polarityN 37917
This theorem is referenced by:  poml5N  37968  poml6N  37969  pexmidlem6N  37989
  Copyright terms: Public domain W3C validator