Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poml4N Structured version   Visualization version   GIF version

Theorem poml4N 39910
Description: Orthomodular law for projective lattices. Lemma 3.3(1) in [Holland95] p. 215. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
poml4.a 𝐴 = (Atoms‘𝐾)
poml4.p = (⊥𝑃𝐾)
Assertion
Ref Expression
poml4N ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌 ∧ ( ‘( 𝑌)) = 𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))

Proof of Theorem poml4N
StepHypRef Expression
1 eqcom 2747 . . 3 (( ‘( 𝑌)) = 𝑌𝑌 = ( ‘( 𝑌)))
2 eqid 2740 . . . . . . 7 (lub‘𝐾) = (lub‘𝐾)
3 poml4.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 eqid 2740 . . . . . . 7 (pmap‘𝐾) = (pmap‘𝐾)
5 poml4.p . . . . . . 7 = (⊥𝑃𝐾)
62, 3, 4, 52polvalN 39871 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( ‘( 𝑌)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))
763adant2 1131 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘( 𝑌)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))
87eqeq2d 2751 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑌 = ( ‘( 𝑌)) ↔ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
98biimpd 229 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑌 = ( ‘( 𝑌)) → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
101, 9biimtrid 242 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑌)) = 𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
11 simpl1 1191 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ HL)
12 hloml 39313 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OML)
1311, 12syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ OML)
14 hlclat 39314 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CLat)
1511, 14syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ CLat)
16 simpl2 1192 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋𝐴)
17 eqid 2740 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1817, 3atssbase 39246 . . . . . . . . 9 𝐴 ⊆ (Base‘𝐾)
1916, 18sstrdi 4021 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋 ⊆ (Base‘𝐾))
2017, 2clatlubcl 18573 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
2115, 19, 20syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
22 simpl3 1193 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌𝐴)
2322, 18sstrdi 4021 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 ⊆ (Base‘𝐾))
2417, 2clatlubcl 18573 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
2515, 23, 24syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
2613, 21, 253jca 1128 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (𝐾 ∈ OML ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)))
27 simprl 770 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋𝑌)
28 eqid 2740 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
2917, 28, 2lubss 18583 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾) ∧ 𝑋𝑌) → ((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌))
3015, 23, 27, 29syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌))
31 eqid 2740 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
32 eqid 2740 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
3317, 28, 31, 32omllaw4 39202 . . . . . 6 ((𝐾 ∈ OML ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌) → (((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)) = ((lub‘𝐾)‘𝑋)))
3426, 30, 33sylc 65 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)) = ((lub‘𝐾)‘𝑋))
3534fveq2d 6924 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
362, 32, 3, 4, 5polval2N 39863 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
3711, 16, 36syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( 𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
38 simprr 772 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))
3937, 38ineq12d 4242 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( 𝑋) ∩ 𝑌) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
40 hlop 39318 . . . . . . . . . . . 12 (𝐾 ∈ HL → 𝐾 ∈ OP)
4111, 40syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ OP)
4217, 32opoccl 39150 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
4341, 21, 42syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
4417, 31, 3, 4pmapmeet 39730 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
4511, 43, 25, 44syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
4639, 45eqtr4d 2783 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( 𝑋) ∩ 𝑌) = ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))))
4746fveq2d 6924 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘(( 𝑋) ∩ 𝑌)) = ( ‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
4811hllatd 39320 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ Lat)
4917, 31latmcl 18510 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
5048, 43, 25, 49syl3anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
5117, 32, 4, 5polpmapN 39869 . . . . . . . 8 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ( ‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
5211, 50, 51syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
5347, 52eqtrd 2780 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘(( 𝑋) ∩ 𝑌)) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
5453, 38ineq12d 4242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
5517, 32opoccl 39150 . . . . . . 7 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾))
5641, 50, 55syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾))
5717, 31, 3, 4pmapmeet 39730 . . . . . 6 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
5811, 56, 25, 57syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
5954, 58eqtr4d 2783 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))))
602, 3, 4, 52polvalN 39871 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
6111, 16, 60syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘( 𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
6235, 59, 613eqtr4d 2790 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋)))
6362ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))
6410, 63sylan2d 604 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌 ∧ ( ‘( 𝑌)) = 𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cin 3975  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  occoc 17319  lubclub 18379  meetcmee 18382  Latclat 18501  CLatccla 18568  OPcops 39128  OMLcoml 39131  Atomscatm 39219  HLchlt 39306  pmapcpmap 39454  𝑃cpolN 39859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-pmap 39461  df-polarityN 39860
This theorem is referenced by:  poml5N  39911  poml6N  39912  pexmidlem6N  39932
  Copyright terms: Public domain W3C validator