Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlol | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlol | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hloml 37378 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
2 | omlol 37261 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 OLcol 37195 OMLcoml 37196 HLchlt 37371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 df-ov 7287 df-oml 37200 df-hlat 37372 |
This theorem is referenced by: hlop 37383 cvrexch 37441 atle 37457 athgt 37477 2at0mat0 37546 dalem24 37718 pmapjat1 37874 atmod1i1m 37879 llnexchb2lem 37889 dalawlem2 37893 dalawlem6 37897 dalawlem7 37898 dalawlem11 37902 dalawlem12 37903 poldmj1N 37949 pmapj2N 37950 2polatN 37953 lhpmcvr3 38046 lhp2at0 38053 lhp2at0nle 38056 lhpelim 38058 lhpmod2i2 38059 lhpmod6i1 38060 lhprelat3N 38061 lhple 38063 4atex2-0aOLDN 38099 trljat1 38187 trljat2 38188 cdlemc1 38212 cdlemc6 38217 cdleme0cp 38235 cdleme0cq 38236 cdleme0e 38238 cdleme1 38248 cdleme2 38249 cdleme3c 38251 cdleme4 38259 cdleme5 38261 cdleme7c 38266 cdleme7e 38268 cdleme8 38271 cdleme9 38274 cdleme10 38275 cdleme15b 38296 cdlemednpq 38320 cdleme20c 38332 cdleme20d 38333 cdleme20j 38339 cdleme22cN 38363 cdleme22d 38364 cdleme22e 38365 cdleme22eALTN 38366 cdleme23b 38371 cdleme30a 38399 cdlemefrs29pre00 38416 cdlemefrs29bpre0 38417 cdlemefrs29cpre1 38419 cdleme32fva 38458 cdleme35b 38471 cdleme35d 38473 cdleme35e 38474 cdleme42a 38492 cdleme42ke 38506 cdlemeg46frv 38546 cdlemg2fv2 38621 cdlemg2m 38625 cdlemg10bALTN 38657 cdlemg12e 38668 cdlemg31d 38721 trlcoabs2N 38743 trlcolem 38747 trljco 38761 cdlemh2 38837 cdlemh 38838 cdlemi1 38839 cdlemk4 38855 cdlemk9 38860 cdlemk9bN 38861 cdlemkid2 38945 dia2dimlem1 39085 dia2dimlem2 39086 dia2dimlem3 39087 doca2N 39147 djajN 39158 cdlemn10 39227 dihvalcqat 39260 dih1 39307 dihglbcpreN 39321 dihmeetbclemN 39325 dihmeetlem7N 39331 dihjatc1 39332 djhlj 39422 djh01 39433 dihjatc 39438 |
Copyright terms: Public domain | W3C validator |