| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlol | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlol | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hloml 39323 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
| 2 | omlol 39206 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 OLcol 39140 OMLcoml 39141 HLchlt 39316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-oml 39145 df-hlat 39317 |
| This theorem is referenced by: hlop 39328 cvrexch 39387 atle 39403 athgt 39423 2at0mat0 39492 dalem24 39664 pmapjat1 39820 atmod1i1m 39825 llnexchb2lem 39835 dalawlem2 39839 dalawlem6 39843 dalawlem7 39844 dalawlem11 39848 dalawlem12 39849 poldmj1N 39895 pmapj2N 39896 2polatN 39899 lhpmcvr3 39992 lhp2at0 39999 lhp2at0nle 40002 lhpelim 40004 lhpmod2i2 40005 lhpmod6i1 40006 lhprelat3N 40007 lhple 40009 4atex2-0aOLDN 40045 trljat1 40133 trljat2 40134 cdlemc1 40158 cdlemc6 40163 cdleme0cp 40181 cdleme0cq 40182 cdleme0e 40184 cdleme1 40194 cdleme2 40195 cdleme3c 40197 cdleme4 40205 cdleme5 40207 cdleme7c 40212 cdleme7e 40214 cdleme8 40217 cdleme9 40220 cdleme10 40221 cdleme15b 40242 cdlemednpq 40266 cdleme20c 40278 cdleme20d 40279 cdleme20j 40285 cdleme22cN 40309 cdleme22d 40310 cdleme22e 40311 cdleme22eALTN 40312 cdleme23b 40317 cdleme30a 40345 cdlemefrs29pre00 40362 cdlemefrs29bpre0 40363 cdlemefrs29cpre1 40365 cdleme32fva 40404 cdleme35b 40417 cdleme35d 40419 cdleme35e 40420 cdleme42a 40438 cdleme42ke 40452 cdlemeg46frv 40492 cdlemg2fv2 40567 cdlemg2m 40571 cdlemg10bALTN 40603 cdlemg12e 40614 cdlemg31d 40667 trlcoabs2N 40689 trlcolem 40693 trljco 40707 cdlemh2 40783 cdlemh 40784 cdlemi1 40785 cdlemk4 40801 cdlemk9 40806 cdlemk9bN 40807 cdlemkid2 40891 dia2dimlem1 41031 dia2dimlem2 41032 dia2dimlem3 41033 doca2N 41093 djajN 41104 cdlemn10 41173 dihvalcqat 41206 dih1 41253 dihglbcpreN 41267 dihmeetbclemN 41271 dihmeetlem7N 41277 dihjatc1 41278 djhlj 41368 djh01 41379 dihjatc 41384 |
| Copyright terms: Public domain | W3C validator |