Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlol | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlol | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hloml 37298 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
2 | omlol 37181 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 OLcol 37115 OMLcoml 37116 HLchlt 37291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-oml 37120 df-hlat 37292 |
This theorem is referenced by: hlop 37303 cvrexch 37361 atle 37377 athgt 37397 2at0mat0 37466 dalem24 37638 pmapjat1 37794 atmod1i1m 37799 llnexchb2lem 37809 dalawlem2 37813 dalawlem6 37817 dalawlem7 37818 dalawlem11 37822 dalawlem12 37823 poldmj1N 37869 pmapj2N 37870 2polatN 37873 lhpmcvr3 37966 lhp2at0 37973 lhp2at0nle 37976 lhpelim 37978 lhpmod2i2 37979 lhpmod6i1 37980 lhprelat3N 37981 lhple 37983 4atex2-0aOLDN 38019 trljat1 38107 trljat2 38108 cdlemc1 38132 cdlemc6 38137 cdleme0cp 38155 cdleme0cq 38156 cdleme0e 38158 cdleme1 38168 cdleme2 38169 cdleme3c 38171 cdleme4 38179 cdleme5 38181 cdleme7c 38186 cdleme7e 38188 cdleme8 38191 cdleme9 38194 cdleme10 38195 cdleme15b 38216 cdlemednpq 38240 cdleme20c 38252 cdleme20d 38253 cdleme20j 38259 cdleme22cN 38283 cdleme22d 38284 cdleme22e 38285 cdleme22eALTN 38286 cdleme23b 38291 cdleme30a 38319 cdlemefrs29pre00 38336 cdlemefrs29bpre0 38337 cdlemefrs29cpre1 38339 cdleme32fva 38378 cdleme35b 38391 cdleme35d 38393 cdleme35e 38394 cdleme42a 38412 cdleme42ke 38426 cdlemeg46frv 38466 cdlemg2fv2 38541 cdlemg2m 38545 cdlemg10bALTN 38577 cdlemg12e 38588 cdlemg31d 38641 trlcoabs2N 38663 trlcolem 38667 trljco 38681 cdlemh2 38757 cdlemh 38758 cdlemi1 38759 cdlemk4 38775 cdlemk9 38780 cdlemk9bN 38781 cdlemkid2 38865 dia2dimlem1 39005 dia2dimlem2 39006 dia2dimlem3 39007 doca2N 39067 djajN 39078 cdlemn10 39147 dihvalcqat 39180 dih1 39227 dihglbcpreN 39241 dihmeetbclemN 39245 dihmeetlem7N 39251 dihjatc1 39252 djhlj 39342 djh01 39353 dihjatc 39358 |
Copyright terms: Public domain | W3C validator |