| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlol | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlol | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hloml 39350 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
| 2 | omlol 39233 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 OLcol 39167 OMLcoml 39168 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-oml 39172 df-hlat 39344 |
| This theorem is referenced by: hlop 39355 cvrexch 39414 atle 39430 athgt 39450 2at0mat0 39519 dalem24 39691 pmapjat1 39847 atmod1i1m 39852 llnexchb2lem 39862 dalawlem2 39866 dalawlem6 39870 dalawlem7 39871 dalawlem11 39875 dalawlem12 39876 poldmj1N 39922 pmapj2N 39923 2polatN 39926 lhpmcvr3 40019 lhp2at0 40026 lhp2at0nle 40029 lhpelim 40031 lhpmod2i2 40032 lhpmod6i1 40033 lhprelat3N 40034 lhple 40036 4atex2-0aOLDN 40072 trljat1 40160 trljat2 40161 cdlemc1 40185 cdlemc6 40190 cdleme0cp 40208 cdleme0cq 40209 cdleme0e 40211 cdleme1 40221 cdleme2 40222 cdleme3c 40224 cdleme4 40232 cdleme5 40234 cdleme7c 40239 cdleme7e 40241 cdleme8 40244 cdleme9 40247 cdleme10 40248 cdleme15b 40269 cdlemednpq 40293 cdleme20c 40305 cdleme20d 40306 cdleme20j 40312 cdleme22cN 40336 cdleme22d 40337 cdleme22e 40338 cdleme22eALTN 40339 cdleme23b 40344 cdleme30a 40372 cdlemefrs29pre00 40389 cdlemefrs29bpre0 40390 cdlemefrs29cpre1 40392 cdleme32fva 40431 cdleme35b 40444 cdleme35d 40446 cdleme35e 40447 cdleme42a 40465 cdleme42ke 40479 cdlemeg46frv 40519 cdlemg2fv2 40594 cdlemg2m 40598 cdlemg10bALTN 40630 cdlemg12e 40641 cdlemg31d 40694 trlcoabs2N 40716 trlcolem 40720 trljco 40734 cdlemh2 40810 cdlemh 40811 cdlemi1 40812 cdlemk4 40828 cdlemk9 40833 cdlemk9bN 40834 cdlemkid2 40918 dia2dimlem1 41058 dia2dimlem2 41059 dia2dimlem3 41060 doca2N 41120 djajN 41131 cdlemn10 41200 dihvalcqat 41233 dih1 41280 dihglbcpreN 41294 dihmeetbclemN 41298 dihmeetlem7N 41304 dihjatc1 41305 djhlj 41395 djh01 41406 dihjatc 41411 |
| Copyright terms: Public domain | W3C validator |