| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlol | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlol | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hloml 39375 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
| 2 | omlol 39258 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 OLcol 39192 OMLcoml 39193 HLchlt 39368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-oml 39197 df-hlat 39369 |
| This theorem is referenced by: hlop 39380 cvrexch 39439 atle 39455 athgt 39475 2at0mat0 39544 dalem24 39716 pmapjat1 39872 atmod1i1m 39877 llnexchb2lem 39887 dalawlem2 39891 dalawlem6 39895 dalawlem7 39896 dalawlem11 39900 dalawlem12 39901 poldmj1N 39947 pmapj2N 39948 2polatN 39951 lhpmcvr3 40044 lhp2at0 40051 lhp2at0nle 40054 lhpelim 40056 lhpmod2i2 40057 lhpmod6i1 40058 lhprelat3N 40059 lhple 40061 4atex2-0aOLDN 40097 trljat1 40185 trljat2 40186 cdlemc1 40210 cdlemc6 40215 cdleme0cp 40233 cdleme0cq 40234 cdleme0e 40236 cdleme1 40246 cdleme2 40247 cdleme3c 40249 cdleme4 40257 cdleme5 40259 cdleme7c 40264 cdleme7e 40266 cdleme8 40269 cdleme9 40272 cdleme10 40273 cdleme15b 40294 cdlemednpq 40318 cdleme20c 40330 cdleme20d 40331 cdleme20j 40337 cdleme22cN 40361 cdleme22d 40362 cdleme22e 40363 cdleme22eALTN 40364 cdleme23b 40369 cdleme30a 40397 cdlemefrs29pre00 40414 cdlemefrs29bpre0 40415 cdlemefrs29cpre1 40417 cdleme32fva 40456 cdleme35b 40469 cdleme35d 40471 cdleme35e 40472 cdleme42a 40490 cdleme42ke 40504 cdlemeg46frv 40544 cdlemg2fv2 40619 cdlemg2m 40623 cdlemg10bALTN 40655 cdlemg12e 40666 cdlemg31d 40719 trlcoabs2N 40741 trlcolem 40745 trljco 40759 cdlemh2 40835 cdlemh 40836 cdlemi1 40837 cdlemk4 40853 cdlemk9 40858 cdlemk9bN 40859 cdlemkid2 40943 dia2dimlem1 41083 dia2dimlem2 41084 dia2dimlem3 41085 doca2N 41145 djajN 41156 cdlemn10 41225 dihvalcqat 41258 dih1 41305 dihglbcpreN 41319 dihmeetbclemN 41323 dihmeetlem7N 41329 dihjatc1 41330 djhlj 41420 djh01 41431 dihjatc 41436 |
| Copyright terms: Public domain | W3C validator |