| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlol | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlol | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hloml 39357 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
| 2 | omlol 39240 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 OLcol 39174 OMLcoml 39175 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-oml 39179 df-hlat 39351 |
| This theorem is referenced by: hlop 39362 cvrexch 39421 atle 39437 athgt 39457 2at0mat0 39526 dalem24 39698 pmapjat1 39854 atmod1i1m 39859 llnexchb2lem 39869 dalawlem2 39873 dalawlem6 39877 dalawlem7 39878 dalawlem11 39882 dalawlem12 39883 poldmj1N 39929 pmapj2N 39930 2polatN 39933 lhpmcvr3 40026 lhp2at0 40033 lhp2at0nle 40036 lhpelim 40038 lhpmod2i2 40039 lhpmod6i1 40040 lhprelat3N 40041 lhple 40043 4atex2-0aOLDN 40079 trljat1 40167 trljat2 40168 cdlemc1 40192 cdlemc6 40197 cdleme0cp 40215 cdleme0cq 40216 cdleme0e 40218 cdleme1 40228 cdleme2 40229 cdleme3c 40231 cdleme4 40239 cdleme5 40241 cdleme7c 40246 cdleme7e 40248 cdleme8 40251 cdleme9 40254 cdleme10 40255 cdleme15b 40276 cdlemednpq 40300 cdleme20c 40312 cdleme20d 40313 cdleme20j 40319 cdleme22cN 40343 cdleme22d 40344 cdleme22e 40345 cdleme22eALTN 40346 cdleme23b 40351 cdleme30a 40379 cdlemefrs29pre00 40396 cdlemefrs29bpre0 40397 cdlemefrs29cpre1 40399 cdleme32fva 40438 cdleme35b 40451 cdleme35d 40453 cdleme35e 40454 cdleme42a 40472 cdleme42ke 40486 cdlemeg46frv 40526 cdlemg2fv2 40601 cdlemg2m 40605 cdlemg10bALTN 40637 cdlemg12e 40648 cdlemg31d 40701 trlcoabs2N 40723 trlcolem 40727 trljco 40741 cdlemh2 40817 cdlemh 40818 cdlemi1 40819 cdlemk4 40835 cdlemk9 40840 cdlemk9bN 40841 cdlemkid2 40925 dia2dimlem1 41065 dia2dimlem2 41066 dia2dimlem3 41067 doca2N 41127 djajN 41138 cdlemn10 41207 dihvalcqat 41240 dih1 41287 dihglbcpreN 41301 dihmeetbclemN 41305 dihmeetlem7N 41311 dihjatc1 41312 djhlj 41402 djh01 41413 dihjatc 41418 |
| Copyright terms: Public domain | W3C validator |