| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlol | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlol | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hloml 39529 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
| 2 | omlol 39412 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 OLcol 39346 OMLcoml 39347 HLchlt 39522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-oml 39351 df-hlat 39523 |
| This theorem is referenced by: hlop 39534 cvrexch 39592 atle 39608 athgt 39628 2at0mat0 39697 dalem24 39869 pmapjat1 40025 atmod1i1m 40030 llnexchb2lem 40040 dalawlem2 40044 dalawlem6 40048 dalawlem7 40049 dalawlem11 40053 dalawlem12 40054 poldmj1N 40100 pmapj2N 40101 2polatN 40104 lhpmcvr3 40197 lhp2at0 40204 lhp2at0nle 40207 lhpelim 40209 lhpmod2i2 40210 lhpmod6i1 40211 lhprelat3N 40212 lhple 40214 4atex2-0aOLDN 40250 trljat1 40338 trljat2 40339 cdlemc1 40363 cdlemc6 40368 cdleme0cp 40386 cdleme0cq 40387 cdleme0e 40389 cdleme1 40399 cdleme2 40400 cdleme3c 40402 cdleme4 40410 cdleme5 40412 cdleme7c 40417 cdleme7e 40419 cdleme8 40422 cdleme9 40425 cdleme10 40426 cdleme15b 40447 cdlemednpq 40471 cdleme20c 40483 cdleme20d 40484 cdleme20j 40490 cdleme22cN 40514 cdleme22d 40515 cdleme22e 40516 cdleme22eALTN 40517 cdleme23b 40522 cdleme30a 40550 cdlemefrs29pre00 40567 cdlemefrs29bpre0 40568 cdlemefrs29cpre1 40570 cdleme32fva 40609 cdleme35b 40622 cdleme35d 40624 cdleme35e 40625 cdleme42a 40643 cdleme42ke 40657 cdlemeg46frv 40697 cdlemg2fv2 40772 cdlemg2m 40776 cdlemg10bALTN 40808 cdlemg12e 40819 cdlemg31d 40872 trlcoabs2N 40894 trlcolem 40898 trljco 40912 cdlemh2 40988 cdlemh 40989 cdlemi1 40990 cdlemk4 41006 cdlemk9 41011 cdlemk9bN 41012 cdlemkid2 41096 dia2dimlem1 41236 dia2dimlem2 41237 dia2dimlem3 41238 doca2N 41298 djajN 41309 cdlemn10 41378 dihvalcqat 41411 dih1 41458 dihglbcpreN 41472 dihmeetbclemN 41476 dihmeetlem7N 41482 dihjatc1 41483 djhlj 41573 djh01 41584 dihjatc 41589 |
| Copyright terms: Public domain | W3C validator |