| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlol | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlol | ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hloml 39396 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
| 2 | omlol 39279 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 OLcol 39213 OMLcoml 39214 HLchlt 39389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-oml 39218 df-hlat 39390 |
| This theorem is referenced by: hlop 39401 cvrexch 39459 atle 39475 athgt 39495 2at0mat0 39564 dalem24 39736 pmapjat1 39892 atmod1i1m 39897 llnexchb2lem 39907 dalawlem2 39911 dalawlem6 39915 dalawlem7 39916 dalawlem11 39920 dalawlem12 39921 poldmj1N 39967 pmapj2N 39968 2polatN 39971 lhpmcvr3 40064 lhp2at0 40071 lhp2at0nle 40074 lhpelim 40076 lhpmod2i2 40077 lhpmod6i1 40078 lhprelat3N 40079 lhple 40081 4atex2-0aOLDN 40117 trljat1 40205 trljat2 40206 cdlemc1 40230 cdlemc6 40235 cdleme0cp 40253 cdleme0cq 40254 cdleme0e 40256 cdleme1 40266 cdleme2 40267 cdleme3c 40269 cdleme4 40277 cdleme5 40279 cdleme7c 40284 cdleme7e 40286 cdleme8 40289 cdleme9 40292 cdleme10 40293 cdleme15b 40314 cdlemednpq 40338 cdleme20c 40350 cdleme20d 40351 cdleme20j 40357 cdleme22cN 40381 cdleme22d 40382 cdleme22e 40383 cdleme22eALTN 40384 cdleme23b 40389 cdleme30a 40417 cdlemefrs29pre00 40434 cdlemefrs29bpre0 40435 cdlemefrs29cpre1 40437 cdleme32fva 40476 cdleme35b 40489 cdleme35d 40491 cdleme35e 40492 cdleme42a 40510 cdleme42ke 40524 cdlemeg46frv 40564 cdlemg2fv2 40639 cdlemg2m 40643 cdlemg10bALTN 40675 cdlemg12e 40686 cdlemg31d 40739 trlcoabs2N 40761 trlcolem 40765 trljco 40779 cdlemh2 40855 cdlemh 40856 cdlemi1 40857 cdlemk4 40873 cdlemk9 40878 cdlemk9bN 40879 cdlemkid2 40963 dia2dimlem1 41103 dia2dimlem2 41104 dia2dimlem3 41105 doca2N 41165 djajN 41176 cdlemn10 41245 dihvalcqat 41278 dih1 41325 dihglbcpreN 41339 dihmeetbclemN 41343 dihmeetlem7N 41349 dihjatc1 41350 djhlj 41440 djh01 41451 dihjatc 41456 |
| Copyright terms: Public domain | W3C validator |