Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlomcmat Structured version   Visualization version   GIF version

Theorem hlomcmat 39365
Description: A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
hlomcmat (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))

Proof of Theorem hlomcmat
StepHypRef Expression
1 hloml 39357 . 2 (𝐾 ∈ HL → 𝐾 ∈ OML)
2 hlclat 39358 . 2 (𝐾 ∈ HL → 𝐾 ∈ CLat)
3 hlatl 39360 . 2 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
41, 2, 33jca 1128 1 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  CLatccla 18464  OMLcoml 39175  AtLatcal 39264  HLchlt 39350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-cvlat 39322  df-hlat 39351
This theorem is referenced by:  hlatmstcOLDN  39398  hlatle  39399  hlrelat1  39401  pmaple  39762  pol1N  39911  polpmapN  39913  pmaplubN  39925
  Copyright terms: Public domain W3C validator