Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlomcmat Structured version   Visualization version   GIF version

Theorem hlomcmat 37306
Description: A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
hlomcmat (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))

Proof of Theorem hlomcmat
StepHypRef Expression
1 hloml 37298 . 2 (𝐾 ∈ HL → 𝐾 ∈ OML)
2 hlclat 37299 . 2 (𝐾 ∈ HL → 𝐾 ∈ CLat)
3 hlatl 37301 . 2 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
41, 2, 33jca 1126 1 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wcel 2108  CLatccla 18131  OMLcoml 37116  AtLatcal 37205  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-cvlat 37263  df-hlat 37292
This theorem is referenced by:  hlatmstcOLDN  37338  hlatle  37339  hlrelat1  37341  pmaple  37702  pol1N  37851  polpmapN  37853  pmaplubN  37865
  Copyright terms: Public domain W3C validator