![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
hlomcmat | ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hloml 39338 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
2 | hlclat 39339 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
3 | hlatl 39341 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
4 | 1, 2, 3 | 3jca 1127 | 1 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2105 CLatccla 18555 OMLcoml 39156 AtLatcal 39245 HLchlt 39331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-cvlat 39303 df-hlat 39332 |
This theorem is referenced by: hlatmstcOLDN 39379 hlatle 39380 hlrelat1 39382 pmaple 39743 pol1N 39892 polpmapN 39894 pmaplubN 39906 |
Copyright terms: Public domain | W3C validator |