| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlomcmat | ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hloml 39335 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
| 2 | hlclat 39336 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 3 | hlatl 39338 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 4 | 1, 2, 3 | 3jca 1128 | 1 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 CLatccla 18422 OMLcoml 39153 AtLatcal 39242 HLchlt 39328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-cvlat 39300 df-hlat 39329 |
| This theorem is referenced by: hlatmstcOLDN 39376 hlatle 39377 hlrelat1 39379 pmaple 39740 pol1N 39889 polpmapN 39891 pmaplubN 39903 |
| Copyright terms: Public domain | W3C validator |