| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlomcmat | ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hloml 39321 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
| 2 | hlclat 39322 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 3 | hlatl 39324 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 4 | 1, 2, 3 | 3jca 1128 | 1 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2108 CLatccla 18506 OMLcoml 39139 AtLatcal 39228 HLchlt 39314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-cvlat 39286 df-hlat 39315 |
| This theorem is referenced by: hlatmstcOLDN 39362 hlatle 39363 hlrelat1 39365 pmaple 39726 pol1N 39875 polpmapN 39877 pmaplubN 39889 |
| Copyright terms: Public domain | W3C validator |