| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlomcmat | ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hloml 39402 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
| 2 | hlclat 39403 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 3 | hlatl 39405 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 4 | 1, 2, 3 | 3jca 1128 | 1 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 CLatccla 18404 OMLcoml 39220 AtLatcal 39309 HLchlt 39395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-cvlat 39367 df-hlat 39396 |
| This theorem is referenced by: hlatmstcOLDN 39442 hlatle 39443 hlrelat1 39445 pmaple 39806 pol1N 39955 polpmapN 39957 pmaplubN 39969 |
| Copyright terms: Public domain | W3C validator |