Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
hlomcmat | ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hloml 37371 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
2 | hlclat 37372 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
3 | hlatl 37374 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
4 | 1, 2, 3 | 3jca 1127 | 1 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2106 CLatccla 18216 OMLcoml 37189 AtLatcal 37278 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-cvlat 37336 df-hlat 37365 |
This theorem is referenced by: hlatmstcOLDN 37411 hlatle 37412 hlrelat1 37414 pmaple 37775 pol1N 37924 polpmapN 37926 pmaplubN 37938 |
Copyright terms: Public domain | W3C validator |