![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
hlomcmat | ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hloml 38227 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
2 | hlclat 38228 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
3 | hlatl 38230 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
4 | 1, 2, 3 | 3jca 1129 | 1 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ∈ wcel 2107 CLatccla 18451 OMLcoml 38045 AtLatcal 38134 HLchlt 38220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-cvlat 38192 df-hlat 38221 |
This theorem is referenced by: hlatmstcOLDN 38268 hlatle 38269 hlrelat1 38271 pmaple 38632 pol1N 38781 polpmapN 38783 pmaplubN 38795 |
Copyright terms: Public domain | W3C validator |