Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djajN Structured version   Visualization version   GIF version

Theorem djajN 41131
Description: Transfer lattice join to DVecA partial vector space closed subspace join. Part of Lemma M of [Crawley] p. 120 line 29, with closed subspace join rather than subspace sum. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaj.k = (join‘𝐾)
djaj.h 𝐻 = (LHyp‘𝐾)
djaj.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djaj.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djajN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋)𝐽(𝐼𝑌)))

Proof of Theorem djajN
StepHypRef Expression
1 hllat 39356 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ Lat)
3 hlop 39355 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
43ad2antrr 726 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OP)
5 eqid 2729 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
6 djaj.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 djaj.i . . . . . . . . . 10 𝐼 = ((DIsoA‘𝐾)‘𝑊)
85, 6, 7diadmclN 41031 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾))
98adantrr 717 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑋 ∈ (Base‘𝐾))
10 eqid 2729 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
115, 10opoccl 39187 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
124, 9, 11syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
135, 6lhpbase 39992 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1413ad2antlr 727 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑊 ∈ (Base‘𝐾))
155, 10opoccl 39187 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
164, 14, 15syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
17 djaj.k . . . . . . . 8 = (join‘𝐾)
185, 17latjcl 18398 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
192, 12, 16, 18syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
20 eqid 2729 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
215, 20latmcl 18399 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
222, 19, 14, 21syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
235, 6, 7diadmclN 41031 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → 𝑌 ∈ (Base‘𝐾))
2423adantrl 716 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑌 ∈ (Base‘𝐾))
255, 10opoccl 39187 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑌 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾))
264, 24, 25syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾))
275, 17latjcl 18398 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
282, 26, 16, 27syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
295, 20latmcl 18399 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
302, 28, 14, 29syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
315, 20latmcl 18399 . . . . 5 ((𝐾 ∈ Lat ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
322, 22, 30, 31syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
33 eqid 2729 . . . . 5 (le‘𝐾) = (le‘𝐾)
345, 33, 20latmle2 18424 . . . . . 6 ((𝐾 ∈ Lat ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
352, 22, 30, 34syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
365, 33, 20latmle2 18424 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
372, 28, 14, 36syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
385, 33, 2, 32, 30, 14, 35, 37lattrd 18405 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)
395, 33, 6, 7diaeldm 41030 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼 ↔ ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)))
4039adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼 ↔ ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)))
4132, 38, 40mpbir2and 713 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼)
42 eqid 2729 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
43 eqid 2729 . . . 4 ((ocA‘𝐾)‘𝑊) = ((ocA‘𝐾)‘𝑊)
4417, 20, 10, 6, 42, 7, 43diaocN 41119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
4541, 44syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
46 hloml 39350 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OML)
4746ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OML)
485, 17latjcl 18398 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
492, 9, 24, 48syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌) ∈ (Base‘𝐾))
5033, 6, 7diadmleN 41032 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊)
5150adantrr 717 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑋(le‘𝐾)𝑊)
5233, 6, 7diadmleN 41032 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → 𝑌(le‘𝐾)𝑊)
5352adantrl 716 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑌(le‘𝐾)𝑊)
545, 33, 17latjle12 18409 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋(le‘𝐾)𝑊𝑌(le‘𝐾)𝑊) ↔ (𝑋 𝑌)(le‘𝐾)𝑊))
552, 9, 24, 14, 54syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋(le‘𝐾)𝑊𝑌(le‘𝐾)𝑊) ↔ (𝑋 𝑌)(le‘𝐾)𝑊))
5651, 53, 55mpbi2and 712 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌)(le‘𝐾)𝑊)
575, 33, 17, 20, 10omlspjN 39254 . . . . 5 ((𝐾 ∈ OML ∧ ((𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)(le‘𝐾)𝑊) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋 𝑌))
5847, 49, 14, 56, 57syl121anc 1377 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋 𝑌))
595, 17latjidm 18421 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
602, 16, 59syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
6160oveq2d 7403 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
625, 17latjass 18442 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))))
632, 49, 16, 16, 62syl13anc 1374 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))))
64 hlol 39354 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
6564ad2antrr 726 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OL)
665, 17, 20, 10oldmm2 39211 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
6765, 49, 14, 66syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
685, 17, 20, 10oldmj1 39214 . . . . . . . . . . . . . 14 ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))
6965, 9, 24, 68syl3anc 1373 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))
705, 33, 20latleeqm1 18426 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
712, 9, 14, 70syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
7251, 71mpbid 232 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋(meet‘𝐾)𝑊) = 𝑋)
7372fveq2d 6862 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘𝑋))
745, 17, 20, 10oldmm1 39210 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
7565, 9, 14, 74syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
7673, 75eqtr3d 2766 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑋) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
775, 33, 20latleeqm1 18426 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑌(le‘𝐾)𝑊 ↔ (𝑌(meet‘𝐾)𝑊) = 𝑌))
782, 24, 14, 77syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑌(le‘𝐾)𝑊 ↔ (𝑌(meet‘𝐾)𝑊) = 𝑌))
7953, 78mpbid 232 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑌(meet‘𝐾)𝑊) = 𝑌)
8079fveq2d 6862 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘𝑌))
815, 17, 20, 10oldmm1 39210 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OL ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8265, 24, 14, 81syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8380, 82eqtr3d 2766 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑌) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8476, 83oveq12d 7405 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
8569, 84eqtrd 2764 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋 𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
8685oveq1d 7402 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
875, 20latmmdir 39228 . . . . . . . . . . . 12 ((𝐾 ∈ OL ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
8865, 19, 28, 14, 87syl13anc 1374 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
8986, 88eqtrd 2764 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
9089fveq2d 6862 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
9167, 90eqtr3d 2766 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
9291oveq1d 7402 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9363, 92eqtr3d 2766 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9461, 93eqtr3d 2766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9594oveq1d 7402 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = ((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
9658, 95eqtr3d 2766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌) = ((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
9796fveq2d 6862 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
98 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
996, 7diaclN 41044 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ ran 𝐼)
10099adantrr 717 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑋) ∈ ran 𝐼)
1016, 42, 7diaelrnN 41039 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ ran 𝐼) → (𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊))
102100, 101syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊))
1036, 7diaclN 41044 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → (𝐼𝑌) ∈ ran 𝐼)
104103adantrl 716 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑌) ∈ ran 𝐼)
1056, 42, 7diaelrnN 41039 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑌) ∈ ran 𝐼) → (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))
106104, 105syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))
107 djaj.j . . . . 5 𝐽 = ((vA‘𝐾)‘𝑊)
1086, 42, 7, 43, 107djavalN 41129 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊) ∧ (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
10998, 102, 106, 108syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
1105, 33, 20latmle2 18424 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
1112, 19, 14, 110syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
1125, 33, 6, 7diaeldm 41030 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
113112adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
11422, 111, 113mpbir2and 713 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
1155, 33, 6, 7diaeldm 41030 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
116115adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
11730, 37, 116mpbir2and 713 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
11820, 6, 7diameetN 41050 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
11998, 114, 117, 118syl12anc 836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
12017, 20, 10, 6, 42, 7, 43diaocN 41119 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)))
121120adantrr 717 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)))
12217, 20, 10, 6, 42, 7, 43diaocN 41119 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))
123122adantrl 716 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))
124121, 123ineq12d 4184 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌))))
125119, 124eqtrd 2764 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌))))
126125fveq2d 6862 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
127109, 126eqtr4d 2767 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
12845, 97, 1273eqtr4d 2774 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋)𝐽(𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3913  wss 3914   class class class wbr 5107  dom cdm 5638  ran crn 5639  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  occoc 17228  joincjn 18272  meetcmee 18273  Latclat 18390  OPcops 39165  OLcol 39167  OMLcoml 39168  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  DIsoAcdia 41022  ocAcocaN 41113  vAcdjaN 41125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-cmtN 39170  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-disoa 41023  df-docaN 41114  df-djaN 41126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator