Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djajN Structured version   Visualization version   GIF version

Theorem djajN 41124
Description: Transfer lattice join to DVecA partial vector space closed subspace join. Part of Lemma M of [Crawley] p. 120 line 29, with closed subspace join rather than subspace sum. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaj.k = (join‘𝐾)
djaj.h 𝐻 = (LHyp‘𝐾)
djaj.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djaj.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djajN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋)𝐽(𝐼𝑌)))

Proof of Theorem djajN
StepHypRef Expression
1 hllat 39349 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ Lat)
3 hlop 39348 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
43ad2antrr 726 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OP)
5 eqid 2729 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
6 djaj.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 djaj.i . . . . . . . . . 10 𝐼 = ((DIsoA‘𝐾)‘𝑊)
85, 6, 7diadmclN 41024 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾))
98adantrr 717 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑋 ∈ (Base‘𝐾))
10 eqid 2729 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
115, 10opoccl 39180 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
124, 9, 11syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
135, 6lhpbase 39985 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1413ad2antlr 727 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑊 ∈ (Base‘𝐾))
155, 10opoccl 39180 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
164, 14, 15syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
17 djaj.k . . . . . . . 8 = (join‘𝐾)
185, 17latjcl 18380 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
192, 12, 16, 18syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
20 eqid 2729 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
215, 20latmcl 18381 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
222, 19, 14, 21syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
235, 6, 7diadmclN 41024 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → 𝑌 ∈ (Base‘𝐾))
2423adantrl 716 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑌 ∈ (Base‘𝐾))
255, 10opoccl 39180 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑌 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾))
264, 24, 25syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾))
275, 17latjcl 18380 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
282, 26, 16, 27syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
295, 20latmcl 18381 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
302, 28, 14, 29syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
315, 20latmcl 18381 . . . . 5 ((𝐾 ∈ Lat ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
322, 22, 30, 31syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
33 eqid 2729 . . . . 5 (le‘𝐾) = (le‘𝐾)
345, 33, 20latmle2 18406 . . . . . 6 ((𝐾 ∈ Lat ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
352, 22, 30, 34syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
365, 33, 20latmle2 18406 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
372, 28, 14, 36syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
385, 33, 2, 32, 30, 14, 35, 37lattrd 18387 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)
395, 33, 6, 7diaeldm 41023 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼 ↔ ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)))
4039adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼 ↔ ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)))
4132, 38, 40mpbir2and 713 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼)
42 eqid 2729 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
43 eqid 2729 . . . 4 ((ocA‘𝐾)‘𝑊) = ((ocA‘𝐾)‘𝑊)
4417, 20, 10, 6, 42, 7, 43diaocN 41112 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
4541, 44syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
46 hloml 39343 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OML)
4746ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OML)
485, 17latjcl 18380 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
492, 9, 24, 48syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌) ∈ (Base‘𝐾))
5033, 6, 7diadmleN 41025 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊)
5150adantrr 717 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑋(le‘𝐾)𝑊)
5233, 6, 7diadmleN 41025 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → 𝑌(le‘𝐾)𝑊)
5352adantrl 716 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑌(le‘𝐾)𝑊)
545, 33, 17latjle12 18391 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋(le‘𝐾)𝑊𝑌(le‘𝐾)𝑊) ↔ (𝑋 𝑌)(le‘𝐾)𝑊))
552, 9, 24, 14, 54syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋(le‘𝐾)𝑊𝑌(le‘𝐾)𝑊) ↔ (𝑋 𝑌)(le‘𝐾)𝑊))
5651, 53, 55mpbi2and 712 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌)(le‘𝐾)𝑊)
575, 33, 17, 20, 10omlspjN 39247 . . . . 5 ((𝐾 ∈ OML ∧ ((𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)(le‘𝐾)𝑊) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋 𝑌))
5847, 49, 14, 56, 57syl121anc 1377 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋 𝑌))
595, 17latjidm 18403 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
602, 16, 59syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
6160oveq2d 7385 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
625, 17latjass 18424 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))))
632, 49, 16, 16, 62syl13anc 1374 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))))
64 hlol 39347 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
6564ad2antrr 726 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OL)
665, 17, 20, 10oldmm2 39204 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
6765, 49, 14, 66syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
685, 17, 20, 10oldmj1 39207 . . . . . . . . . . . . . 14 ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))
6965, 9, 24, 68syl3anc 1373 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))
705, 33, 20latleeqm1 18408 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
712, 9, 14, 70syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
7251, 71mpbid 232 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋(meet‘𝐾)𝑊) = 𝑋)
7372fveq2d 6844 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘𝑋))
745, 17, 20, 10oldmm1 39203 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
7565, 9, 14, 74syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
7673, 75eqtr3d 2766 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑋) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
775, 33, 20latleeqm1 18408 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑌(le‘𝐾)𝑊 ↔ (𝑌(meet‘𝐾)𝑊) = 𝑌))
782, 24, 14, 77syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑌(le‘𝐾)𝑊 ↔ (𝑌(meet‘𝐾)𝑊) = 𝑌))
7953, 78mpbid 232 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑌(meet‘𝐾)𝑊) = 𝑌)
8079fveq2d 6844 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘𝑌))
815, 17, 20, 10oldmm1 39203 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OL ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8265, 24, 14, 81syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8380, 82eqtr3d 2766 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑌) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8476, 83oveq12d 7387 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
8569, 84eqtrd 2764 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋 𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
8685oveq1d 7384 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
875, 20latmmdir 39221 . . . . . . . . . . . 12 ((𝐾 ∈ OL ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
8865, 19, 28, 14, 87syl13anc 1374 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
8986, 88eqtrd 2764 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
9089fveq2d 6844 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
9167, 90eqtr3d 2766 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
9291oveq1d 7384 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9363, 92eqtr3d 2766 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9461, 93eqtr3d 2766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9594oveq1d 7384 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = ((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
9658, 95eqtr3d 2766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌) = ((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
9796fveq2d 6844 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
98 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
996, 7diaclN 41037 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ ran 𝐼)
10099adantrr 717 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑋) ∈ ran 𝐼)
1016, 42, 7diaelrnN 41032 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ ran 𝐼) → (𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊))
102100, 101syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊))
1036, 7diaclN 41037 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → (𝐼𝑌) ∈ ran 𝐼)
104103adantrl 716 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑌) ∈ ran 𝐼)
1056, 42, 7diaelrnN 41032 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑌) ∈ ran 𝐼) → (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))
106104, 105syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))
107 djaj.j . . . . 5 𝐽 = ((vA‘𝐾)‘𝑊)
1086, 42, 7, 43, 107djavalN 41122 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊) ∧ (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
10998, 102, 106, 108syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
1105, 33, 20latmle2 18406 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
1112, 19, 14, 110syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
1125, 33, 6, 7diaeldm 41023 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
113112adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
11422, 111, 113mpbir2and 713 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
1155, 33, 6, 7diaeldm 41023 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
116115adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
11730, 37, 116mpbir2and 713 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
11820, 6, 7diameetN 41043 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
11998, 114, 117, 118syl12anc 836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
12017, 20, 10, 6, 42, 7, 43diaocN 41112 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)))
121120adantrr 717 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)))
12217, 20, 10, 6, 42, 7, 43diaocN 41112 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))
123122adantrl 716 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))
124121, 123ineq12d 4180 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌))))
125119, 124eqtrd 2764 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌))))
126125fveq2d 6844 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
127109, 126eqtr4d 2767 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
12845, 97, 1273eqtr4d 2774 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋)𝐽(𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3910  wss 3911   class class class wbr 5102  dom cdm 5631  ran crn 5632  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  occoc 17204  joincjn 18252  meetcmee 18253  Latclat 18372  OPcops 39158  OLcol 39160  OMLcoml 39161  HLchlt 39336  LHypclh 39971  LTrncltrn 40088  DIsoAcdia 41015  ocAcocaN 41106  vAcdjaN 41118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-map 8778  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-cmtN 39163  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lvols 39487  df-lines 39488  df-psubsp 39490  df-pmap 39491  df-padd 39783  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146  df-disoa 41016  df-docaN 41107  df-djaN 41119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator