Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djajN Structured version   Visualization version   GIF version

Theorem djajN 41094
Description: Transfer lattice join to DVecA partial vector space closed subspace join. Part of Lemma M of [Crawley] p. 120 line 29, with closed subspace join rather than subspace sum. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaj.k = (join‘𝐾)
djaj.h 𝐻 = (LHyp‘𝐾)
djaj.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djaj.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djajN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋)𝐽(𝐼𝑌)))

Proof of Theorem djajN
StepHypRef Expression
1 hllat 39319 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21ad2antrr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ Lat)
3 hlop 39318 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
43ad2antrr 725 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OP)
5 eqid 2740 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
6 djaj.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 djaj.i . . . . . . . . . 10 𝐼 = ((DIsoA‘𝐾)‘𝑊)
85, 6, 7diadmclN 40994 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾))
98adantrr 716 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑋 ∈ (Base‘𝐾))
10 eqid 2740 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
115, 10opoccl 39150 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
124, 9, 11syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
135, 6lhpbase 39955 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1413ad2antlr 726 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑊 ∈ (Base‘𝐾))
155, 10opoccl 39150 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
164, 14, 15syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
17 djaj.k . . . . . . . 8 = (join‘𝐾)
185, 17latjcl 18509 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
192, 12, 16, 18syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
20 eqid 2740 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
215, 20latmcl 18510 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
222, 19, 14, 21syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
235, 6, 7diadmclN 40994 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → 𝑌 ∈ (Base‘𝐾))
2423adantrl 715 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑌 ∈ (Base‘𝐾))
255, 10opoccl 39150 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑌 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾))
264, 24, 25syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾))
275, 17latjcl 18509 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
282, 26, 16, 27syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
295, 20latmcl 18510 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
302, 28, 14, 29syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
315, 20latmcl 18510 . . . . 5 ((𝐾 ∈ Lat ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
322, 22, 30, 31syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
33 eqid 2740 . . . . 5 (le‘𝐾) = (le‘𝐾)
345, 33, 20latmle2 18535 . . . . . 6 ((𝐾 ∈ Lat ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
352, 22, 30, 34syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
365, 33, 20latmle2 18535 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
372, 28, 14, 36syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
385, 33, 2, 32, 30, 14, 35, 37lattrd 18516 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)
395, 33, 6, 7diaeldm 40993 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼 ↔ ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)))
4039adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼 ↔ ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)))
4132, 38, 40mpbir2and 712 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼)
42 eqid 2740 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
43 eqid 2740 . . . 4 ((ocA‘𝐾)‘𝑊) = ((ocA‘𝐾)‘𝑊)
4417, 20, 10, 6, 42, 7, 43diaocN 41082 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
4541, 44syldan 590 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
46 hloml 39313 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OML)
4746ad2antrr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OML)
485, 17latjcl 18509 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
492, 9, 24, 48syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌) ∈ (Base‘𝐾))
5033, 6, 7diadmleN 40995 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊)
5150adantrr 716 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑋(le‘𝐾)𝑊)
5233, 6, 7diadmleN 40995 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → 𝑌(le‘𝐾)𝑊)
5352adantrl 715 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑌(le‘𝐾)𝑊)
545, 33, 17latjle12 18520 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋(le‘𝐾)𝑊𝑌(le‘𝐾)𝑊) ↔ (𝑋 𝑌)(le‘𝐾)𝑊))
552, 9, 24, 14, 54syl13anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋(le‘𝐾)𝑊𝑌(le‘𝐾)𝑊) ↔ (𝑋 𝑌)(le‘𝐾)𝑊))
5651, 53, 55mpbi2and 711 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌)(le‘𝐾)𝑊)
575, 33, 17, 20, 10omlspjN 39217 . . . . 5 ((𝐾 ∈ OML ∧ ((𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)(le‘𝐾)𝑊) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋 𝑌))
5847, 49, 14, 56, 57syl121anc 1375 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋 𝑌))
595, 17latjidm 18532 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
602, 16, 59syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
6160oveq2d 7464 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
625, 17latjass 18553 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))))
632, 49, 16, 16, 62syl13anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))))
64 hlol 39317 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
6564ad2antrr 725 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OL)
665, 17, 20, 10oldmm2 39174 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
6765, 49, 14, 66syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
685, 17, 20, 10oldmj1 39177 . . . . . . . . . . . . . 14 ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))
6965, 9, 24, 68syl3anc 1371 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))
705, 33, 20latleeqm1 18537 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
712, 9, 14, 70syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
7251, 71mpbid 232 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋(meet‘𝐾)𝑊) = 𝑋)
7372fveq2d 6924 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘𝑋))
745, 17, 20, 10oldmm1 39173 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
7565, 9, 14, 74syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
7673, 75eqtr3d 2782 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑋) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
775, 33, 20latleeqm1 18537 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑌(le‘𝐾)𝑊 ↔ (𝑌(meet‘𝐾)𝑊) = 𝑌))
782, 24, 14, 77syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑌(le‘𝐾)𝑊 ↔ (𝑌(meet‘𝐾)𝑊) = 𝑌))
7953, 78mpbid 232 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑌(meet‘𝐾)𝑊) = 𝑌)
8079fveq2d 6924 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘𝑌))
815, 17, 20, 10oldmm1 39173 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OL ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8265, 24, 14, 81syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8380, 82eqtr3d 2782 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑌) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8476, 83oveq12d 7466 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
8569, 84eqtrd 2780 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋 𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
8685oveq1d 7463 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
875, 20latmmdir 39191 . . . . . . . . . . . 12 ((𝐾 ∈ OL ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
8865, 19, 28, 14, 87syl13anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
8986, 88eqtrd 2780 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
9089fveq2d 6924 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
9167, 90eqtr3d 2782 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
9291oveq1d 7463 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9363, 92eqtr3d 2782 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9461, 93eqtr3d 2782 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9594oveq1d 7463 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = ((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
9658, 95eqtr3d 2782 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌) = ((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
9796fveq2d 6924 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
98 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
996, 7diaclN 41007 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ ran 𝐼)
10099adantrr 716 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑋) ∈ ran 𝐼)
1016, 42, 7diaelrnN 41002 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ ran 𝐼) → (𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊))
102100, 101syldan 590 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊))
1036, 7diaclN 41007 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → (𝐼𝑌) ∈ ran 𝐼)
104103adantrl 715 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑌) ∈ ran 𝐼)
1056, 42, 7diaelrnN 41002 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑌) ∈ ran 𝐼) → (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))
106104, 105syldan 590 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))
107 djaj.j . . . . 5 𝐽 = ((vA‘𝐾)‘𝑊)
1086, 42, 7, 43, 107djavalN 41092 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊) ∧ (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
10998, 102, 106, 108syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
1105, 33, 20latmle2 18535 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
1112, 19, 14, 110syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
1125, 33, 6, 7diaeldm 40993 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
113112adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
11422, 111, 113mpbir2and 712 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
1155, 33, 6, 7diaeldm 40993 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
116115adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
11730, 37, 116mpbir2and 712 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
11820, 6, 7diameetN 41013 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
11998, 114, 117, 118syl12anc 836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
12017, 20, 10, 6, 42, 7, 43diaocN 41082 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)))
121120adantrr 716 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)))
12217, 20, 10, 6, 42, 7, 43diaocN 41082 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))
123122adantrl 715 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))
124121, 123ineq12d 4242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌))))
125119, 124eqtrd 2780 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌))))
126125fveq2d 6924 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
127109, 126eqtr4d 2783 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
12845, 97, 1273eqtr4d 2790 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋)𝐽(𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976   class class class wbr 5166  dom cdm 5700  ran crn 5701  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  occoc 17319  joincjn 18381  meetcmee 18382  Latclat 18501  OPcops 39128  OLcol 39130  OMLcoml 39131  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  DIsoAcdia 40985  ocAcocaN 41076  vAcdjaN 41088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-undef 8314  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-cmtN 39133  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-disoa 40986  df-docaN 41077  df-djaN 41089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator