MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fressnfv Structured version   Visualization version   GIF version

Theorem fressnfv 7194
Description: The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fressnfv ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶))

Proof of Theorem fressnfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4658 . . . . . 6 (𝑥 = 𝐵 → {𝑥} = {𝐵})
2 reseq2 6004 . . . . . . . 8 ({𝑥} = {𝐵} → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐵}))
32feq1d 6732 . . . . . . 7 ({𝑥} = {𝐵} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝑥}⟶𝐶))
4 feq2 6729 . . . . . . 7 ({𝑥} = {𝐵} → ((𝐹 ↾ {𝐵}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝐵}⟶𝐶))
53, 4bitrd 279 . . . . . 6 ({𝑥} = {𝐵} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝐵}⟶𝐶))
61, 5syl 17 . . . . 5 (𝑥 = 𝐵 → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝐵}⟶𝐶))
7 fveq2 6920 . . . . . 6 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
87eleq1d 2829 . . . . 5 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ 𝐶 ↔ (𝐹𝐵) ∈ 𝐶))
96, 8bibi12d 345 . . . 4 (𝑥 = 𝐵 → (((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶) ↔ ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶)))
109imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐹 Fn 𝐴 → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶)) ↔ (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶))))
11 fnressn 7192 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
12 vsnid 4685 . . . . . . . . . 10 𝑥 ∈ {𝑥}
13 fvres 6939 . . . . . . . . . 10 (𝑥 ∈ {𝑥} → ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥))
1412, 13ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥)
1514opeq2i 4901 . . . . . . . 8 𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩ = ⟨𝑥, (𝐹𝑥)⟩
1615sneqi 4659 . . . . . . 7 {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} = {⟨𝑥, (𝐹𝑥)⟩}
1716eqeq2i 2753 . . . . . 6 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
18 vex 3492 . . . . . . . 8 𝑥 ∈ V
1918fsn2 7170 . . . . . . 7 ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}))
20 iba 527 . . . . . . . 8 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} → (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩})))
2114eleq1i 2835 . . . . . . . 8 (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ↔ (𝐹𝑥) ∈ 𝐶)
2220, 21bitr3di 286 . . . . . . 7 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} → ((((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}) ↔ (𝐹𝑥) ∈ 𝐶))
2319, 22bitrid 283 . . . . . 6 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
2417, 23sylbir 235 . . . . 5 ((𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
2511, 24syl 17 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
2625expcom 413 . . 3 (𝑥𝐴 → (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶)))
2710, 26vtoclga 3589 . 2 (𝐵𝐴 → (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶)))
2827impcom 407 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {csn 4648  cop 4654  cres 5702   Fn wfn 6568  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  dif1enlem  9222  dif1enlemOLD  9223
  Copyright terms: Public domain W3C validator