MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fressnfv Structured version   Visualization version   GIF version

Theorem fressnfv 7114
Description: The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fressnfv ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶))

Proof of Theorem fressnfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4595 . . . . . 6 (𝑥 = 𝐵 → {𝑥} = {𝐵})
2 reseq2 5934 . . . . . . . 8 ({𝑥} = {𝐵} → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐵}))
32feq1d 6652 . . . . . . 7 ({𝑥} = {𝐵} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝑥}⟶𝐶))
4 feq2 6649 . . . . . . 7 ({𝑥} = {𝐵} → ((𝐹 ↾ {𝐵}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝐵}⟶𝐶))
53, 4bitrd 279 . . . . . 6 ({𝑥} = {𝐵} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝐵}⟶𝐶))
61, 5syl 17 . . . . 5 (𝑥 = 𝐵 → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝐵}⟶𝐶))
7 fveq2 6840 . . . . . 6 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
87eleq1d 2813 . . . . 5 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ 𝐶 ↔ (𝐹𝐵) ∈ 𝐶))
96, 8bibi12d 345 . . . 4 (𝑥 = 𝐵 → (((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶) ↔ ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶)))
109imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐹 Fn 𝐴 → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶)) ↔ (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶))))
11 fnressn 7112 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
12 vsnid 4623 . . . . . . . . . 10 𝑥 ∈ {𝑥}
13 fvres 6859 . . . . . . . . . 10 (𝑥 ∈ {𝑥} → ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥))
1412, 13ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥)
1514opeq2i 4837 . . . . . . . 8 𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩ = ⟨𝑥, (𝐹𝑥)⟩
1615sneqi 4596 . . . . . . 7 {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} = {⟨𝑥, (𝐹𝑥)⟩}
1716eqeq2i 2742 . . . . . 6 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
18 vex 3448 . . . . . . . 8 𝑥 ∈ V
1918fsn2 7090 . . . . . . 7 ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}))
20 iba 527 . . . . . . . 8 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} → (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩})))
2114eleq1i 2819 . . . . . . . 8 (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ↔ (𝐹𝑥) ∈ 𝐶)
2220, 21bitr3di 286 . . . . . . 7 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} → ((((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}) ↔ (𝐹𝑥) ∈ 𝐶))
2319, 22bitrid 283 . . . . . 6 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
2417, 23sylbir 235 . . . . 5 ((𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
2511, 24syl 17 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
2625expcom 413 . . 3 (𝑥𝐴 → (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶)))
2710, 26vtoclga 3540 . 2 (𝐵𝐴 → (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶)))
2827impcom 407 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4585  cop 4591  cres 5633   Fn wfn 6494  wf 6495  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507
This theorem is referenced by:  dif1enlem  9097  dif1enlemOLD  9098
  Copyright terms: Public domain W3C validator