MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fressnfv Structured version   Visualization version   GIF version

Theorem fressnfv 6921
Description: The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fressnfv ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶))

Proof of Theorem fressnfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4576 . . . . . 6 (𝑥 = 𝐵 → {𝑥} = {𝐵})
2 reseq2 5847 . . . . . . . 8 ({𝑥} = {𝐵} → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐵}))
32feq1d 6498 . . . . . . 7 ({𝑥} = {𝐵} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝑥}⟶𝐶))
4 feq2 6495 . . . . . . 7 ({𝑥} = {𝐵} → ((𝐹 ↾ {𝐵}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝐵}⟶𝐶))
53, 4bitrd 281 . . . . . 6 ({𝑥} = {𝐵} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝐵}⟶𝐶))
61, 5syl 17 . . . . 5 (𝑥 = 𝐵 → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹 ↾ {𝐵}):{𝐵}⟶𝐶))
7 fveq2 6669 . . . . . 6 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
87eleq1d 2897 . . . . 5 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ 𝐶 ↔ (𝐹𝐵) ∈ 𝐶))
96, 8bibi12d 348 . . . 4 (𝑥 = 𝐵 → (((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶) ↔ ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶)))
109imbi2d 343 . . 3 (𝑥 = 𝐵 → ((𝐹 Fn 𝐴 → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶)) ↔ (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶))))
11 fnressn 6919 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
12 vsnid 4601 . . . . . . . . . 10 𝑥 ∈ {𝑥}
13 fvres 6688 . . . . . . . . . 10 (𝑥 ∈ {𝑥} → ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥))
1412, 13ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥)
1514opeq2i 4806 . . . . . . . 8 𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩ = ⟨𝑥, (𝐹𝑥)⟩
1615sneqi 4577 . . . . . . 7 {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} = {⟨𝑥, (𝐹𝑥)⟩}
1716eqeq2i 2834 . . . . . 6 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
18 vex 3497 . . . . . . . 8 𝑥 ∈ V
1918fsn2 6897 . . . . . . 7 ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}))
2014eleq1i 2903 . . . . . . . 8 (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ↔ (𝐹𝑥) ∈ 𝐶)
21 iba 530 . . . . . . . 8 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} → (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩})))
2220, 21syl5rbbr 288 . . . . . . 7 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} → ((((𝐹 ↾ {𝑥})‘𝑥) ∈ 𝐶 ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}) ↔ (𝐹𝑥) ∈ 𝐶))
2319, 22syl5bb 285 . . . . . 6 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
2417, 23sylbir 237 . . . . 5 ((𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩} → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
2511, 24syl 17 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
2625expcom 416 . . 3 (𝑥𝐴 → (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝑥}):{𝑥}⟶𝐶 ↔ (𝐹𝑥) ∈ 𝐶)))
2710, 26vtoclga 3573 . 2 (𝐵𝐴 → (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶)))
2827impcom 410 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹𝐵) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {csn 4566  cop 4572  cres 5556   Fn wfn 6349  wf 6350  cfv 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator